frontal cortex

额叶皮质
  • 文章类型: Journal Article
    缩放关系是关键时表征复杂系统的关键。在大脑中,它们在通过幂律量化的神经元活动的神经元雪崩尺度不变级联中很明显。雪崩在细胞水平上表现为神经元群的级联,同时激发动作电位。这种时空同步对于脑功能理论至关重要,但当只观察到一小部分神经元时,雪崩同步通常被低估。这里,我们研究了在兴奋性和抑制性神经元的平衡网络中来自分数抽样的偏差,该网络具有全对全连通性和关键分支过程动力学.我们专注于平均雪崩大小如何随雪崩持续时间变化。对于抛物线雪崩,这种缩放是二次的,由缩放指数量化,χ=2,反映了短时间内同时神经元放电的快速空间扩展。然而,在分数采样的网络中,χ明显降低。我们证明,即使对只有0.1%的神经元进行采样,也可以应用时间粗粒度并增加最小阈值以同时放电恢复χ=2。这种校正至关重要地取决于网络是关键的,并且对于接近亚超临界和超临界的分支动力学是失败的。使用细胞双光子成像,我们的方法在清醒小鼠额叶皮层正在进行的神经元活动的广泛参数范围内稳健地识别χ=2。相比之下,常见的“裂纹噪声”方法无法在临界时在相似的采样条件下确定χ。我们的发现克服了分数抽样的缩放偏差,并证明了快速,神经元集合体的时空同步与尺度不变一致,临界状态下的抛物线雪崩。
    Scaling relationships are key in characterizing complex systems at criticality. In the brain, they are evident in neuronal avalanches-scale-invariant cascades of neuronal activity quantified by power laws. Avalanches manifest at the cellular level as cascades of neuronal groups that fire action potentials simultaneously. Such spatiotemporal synchronization is vital to theories on brain function yet avalanche synchronization is often underestimated when only a fraction of neurons is observed. Here, we investigate biases from fractional sampling within a balanced network of excitatory and inhibitory neurons with all-to-all connectivity and critical branching process dynamics. We focus on how mean avalanche size scales with avalanche duration. For parabolic avalanches, this scaling is quadratic, quantified by the scaling exponent, χ = 2, reflecting rapid spatial expansion of simultaneous neuronal firing over short durations. However, in networks sampled fractionally, χ is significantly lower. We demonstrate that applying temporal coarse-graining and increasing a minimum threshold for coincident firing restores χ = 2, even when as few as 0.1% of neurons are sampled. This correction crucially depends on the network being critical and fails for near sub- and supercritical branching dynamics. Using cellular 2-photon imaging, our approach robustly identifies χ = 2 over a wide parameter regime in ongoing neuronal activity from frontal cortex of awake mice. In contrast, the common \'crackling noise\' approach fails to determine χ under similar sampling conditions at criticality. Our findings overcome scaling bias from fractional sampling and demonstrate rapid, spatiotemporal synchronization of neuronal assemblies consistent with scale-invariant, parabolic avalanches at criticality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    主观认知功能下降(SCD)是阿尔茨海默病(AD)临床前期的高危人群,嗅觉功能障碍是痴呆进展的危险因素。本研究旨在探索SCD受试者在嗅觉刺激过程中嗅觉神经回路功能连接(FC)变化的模式。共包括56名SCD受试者和56名正常对照(NC)。所有受试者均采用认知量表进行评估,嗅觉行为测试,基于嗅觉任务的功能磁共振成像扫描。通过广义心理生理相互作用分析两组之间嗅觉神经回路的FC差异。此外,我们计算并比较了气味刺激过程中嗅觉神经回路中大脑区域的激活,大脑区域的体积差异显示了组间的FC差异,神经影像学指标与嗅觉行为和认知量表得分的相关性。在气味刺激期间,SCD组双侧初级嗅觉皮层(bPOC)与右侧海马之间的FC显著降低;而SCD组右侧海马与右侧额叶皮层之间的FC显著升高.所有受试者的bPOC均表现出显著的活化,但两组之间的激活没有显着差异。在嗅觉神经回路内的大脑区域的体积或组间的嗅觉行为中未观察到显着差异。bPOC和右额叶皮层的体积与嗅觉识别呈显著正相关,右额叶皮质和右海马的体积与认知功能显着相关。此外,在整个队列中发现bPOC激活与嗅觉阈值之间存在显著相关性.这些结果表明,尽管SCD受试者的嗅觉神经回路结构和嗅觉行为保持稳定,在嗅觉神经回路的FC中观察到显著的变化(特别是,气味刺激期间的POC-海马-额叶皮层神经回路)。这些发现强调了FC改变作为识别AD早期高危个体的敏感成像标记的潜力。
    Subjective cognitive decline (SCD) is a high-risk population in the preclinical stage of Alzheimer\'s disease (AD), and olfactory dysfunction is a risk factor for dementia progression. The present study aimed to explore the patterns of functional connectivity (FC) changes in the olfactory neural circuits during olfactory stimulation in SCD subjects. A total of 56 SCD subjects and 56 normal controls (NCs) were included. All subjects were assessed with a cognitive scale, an olfactory behavior test, and olfactory task-based functional magnetic resonance imaging scanning. The FC differences in olfactory neural circuits between the two groups were analyzed by the generalized psychophysiological interaction. Additionally, we calculated and compared the activation of brain regions within the olfactory neural circuits during odor stimulation, the volumetric differences in brain regions showing FC differences between groups, and the correlations between neuroimaging indicators and olfactory behavioral and cognitive scale scores. During odor stimulation, the FC between the bilateral primary olfactory cortex (bPOC) and the right hippocampus in the SCD group was significantly reduced; while the FC between the right hippocampus and the right frontal cortex was significantly increased in the SCD group. The bPOC of all subjects showed significant activation, but no significant difference in activation between groups was found. No significant differences were observed in the volume of the brain regions within the olfactory neural circuits or in olfactory behavior between groups. The volume of the bPOC and right frontal cortex was significantly positively correlated with olfactory identification, and the volume of the right frontal cortex and right hippocampus was significantly correlated with cognitive functions. Furthermore, a significant correlation between the activation of bPOC and the olfactory threshold was found in the whole cohort. These results suggested that while the structure of the olfactory neural circuits and olfactory behavior in SCD subjects remained stable, there were significant changes observed in the FC of the olfactory neural circuits (specifically, the POC-hippocampus-frontal cortex neural circuits) during odor stimulation. These findings highlight the potential of FC alterations as sensitive imaging markers for identifying high-risk individuals in the early stage of AD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    应激诱导的中枢神经元代谢和功能的改变是抑郁症发作的关键因素。然而,与抑郁症相关的神经元代谢功能障碍和特定的分子机制仍不清楚。这项研究最初使用NHANES数据库分析了胆固醇和抑郁症之间的关系。然后,我们通过约束应激在小鼠中诱导抑郁样行为。应用生物信息学,病理学,和分子生物学,我们观察了脑胆固醇稳态的病理特征,并探讨了脑胆固醇代谢紊乱的调节机制。通过NHANES数据库,我们初步证实了胆固醇代谢异常与抑郁症之间的显著相关性。此外,在成功建立应激小鼠模型的基础上,我们发现由于压力,大脑中与胆固醇相关的DEGs的数量显着增加,并表现出区域异质性。额叶皮层的进一步调查,与抑郁症密切相关的大脑区域,揭示的压力导致与胆固醇代谢相关的关键基因显著中断,包括HMGCR,CYP46A1,ACAT1,APOE,ABCA1和LDLR,导致总胆固醇含量增加和突触蛋白PSD-95和SYN的显着减少。这表明胆固醇代谢影响神经元突触可塑性,并与小鼠应激诱导的抑郁样行为有关。短期应激小鼠前额叶皮质中NR3C1的腺相关病毒干扰导致NRIP1,NR1H2,ABCA1和总胆固醇含量的蛋白质水平降低。同时,它增加了突触蛋白PSD95和SYN,有效缓解抑郁样行为。因此,这些结果提示短期应激可能通过激活NR3C1/NRIP1/NR1H2信号通路诱导胆固醇代谢紊乱.这会损害神经元突触可塑性,因此参与小鼠的抑郁样行为。这些发现表明,压力引起的大脑中胆固醇代谢异常是抑郁症发作的重要原因。
    Stress-induced alterations in central neuron metabolism and function are crucial contributors to depression onset. However, the metabolic dysfunctions of the neurons associated with depression and specific molecular mechanisms remain unclear. This study initially analyzed the relationship between cholesterol and depression using the NHANES database. We then induced depressive-like behaviors in mice via restraint stress. Applying bioinformatics, pathology, and molecular biology, we observed the pathological characteristics of brain cholesterol homeostasis and investigated the regulatory mechanisms of brain cholesterol metabolism disorders. Through the NHANES database, we initially confirmed a significant correlation between cholesterol metabolism abnormalities and depression. Furthermore, based on successful stress mouse model establishment, we discovered the number of cholesterol-related DEGs significantly increased in the brain due to stress, and exhibited regional heterogeneity. Further investigation of the frontal cortex, a brain region closely related to depression, revealed stress caused significant disruption to key genes related to cholesterol metabolism, including HMGCR, CYP46A1, ACAT1, APOE, ABCA1, and LDLR, leading to an increase in total cholesterol content and a significant decrease in synaptic proteins PSD-95 and SYN. This indicates cholesterol metabolism affects neuronal synaptic plasticity and is associated with stress-induced depressive-like behavior in mice. Adeno-associated virus interference with NR3C1 in the prefrontal cortex of mice subjected to short-term stress resulted in reduced protein levels of NRIP1, NR1H2, ABCA1, and total cholesterol content. At the same time, it increased synaptic proteins PSD95 and SYN, effectively alleviating depressive-like behavior. Therefore, these results suggest that short-term stress may induce cholesterol metabolism disorders by activating the NR3C1/NRIP1/NR1H2 signaling pathway. This impairs neuronal synaptic plasticity and consequently participates in depressive-like behavior in mice. These findings suggest that abnormal cholesterol metabolism in the brain induced by stress is a significant contributor to depression onset.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    APP/PS1小鼠模型概括了人类阿尔茨海默病(AD)的病理学。而淀粉样β肽沉积和神经变性是AD的特征,病理可能涉及炎症和受损的血管再生。
    这项研究评估了大脑和骨髓(BM)的炎症环境,以及对脑微血管密度的影响。
    研究了9个月大的雄性APP/PS1或对照C57Bl6/j小鼠的BM和额叶皮层。通过免疫组织化学评估额叶皮质切片中的血管密度和炎症细胞。通过流式细胞术和克隆形成测定法对造血干/祖细胞(BM)和单核细胞-巨噬细胞的不同亚群进行了表征。通过实时RT-PCR或蛋白质印迹法评估骨髓生成或炎症因子。
    额叶皮质中CD34+或CD31+血管结构较低(p<0.01,n=6),这与BM和循环中Lin-Sca-1+cKit+血管生成祖细胞的数量减少有关(p<0.02,n=6)。多能祖细胞MPP4,普通淋巴,APP/PS1-BM中常见的骨髓和骨髓祖细胞高于对照组,与单核细胞和促炎巨噬细胞数量增加一致。与对照相比,APP/PS1BM-HSPC或BM上清液中的促骨髓生成因子和警报因子的表达更高。APP/PS1小鼠的额叶皮质显示出较高数量的促炎巨噬细胞(CD11b+F4/80+或CD80+)和小胶质细胞(OX42+Iba1+)。
    这些发现表明APP/PS1小鼠的AD病理与骨髓生成上调有关,这有助于大脑炎症和血管减少。
    UNASSIGNED: The APP/PS1 mouse model recapitulates pathology of human Alzheimer\'s disease (AD). While amyloid-β peptide deposition and neurodegeneration are features of AD, the pathology may involve inflammation and impaired vascular regeneration.
    UNASSIGNED: This study evaluated inflammatory environments in the brain and bone marrow (BM), and the impact on brain microvascular density.
    UNASSIGNED: BM and frontal cortex from male nine-month-old APP/PS1 or the control C57Bl6/j mice were studied. Vascular density and inflammatory cells were evaluated in the sections of frontal cortex by immunohistochemistry. Different subsets of hematopoietic stem/progenitor cells (BM) and monocyte-macrophages were characterized by flow cytometry and by clonogenic assays. Myelopoietic or inflammatory factors were evaluated by real-time RT-PCR or by western blotting.
    UNASSIGNED: CD34+ or CD31+ vascular structures were lower (p < 0.01, n = 6) in the frontal cortex that was associated with decreased number of Lin-Sca-1+cKit+ vasculogenic progenitor cells in the BM and circulation (p < 0.02, n = 6) compared to the control. Multipotent progenitor cells MPP4, common lymphoid, common myeloid and myeloid progenitor cells were higher in the APP/PS1-BM compared to the control, which agreed with increased numbers of monocytes and pro-inflammatory macrophages. The expression of pro-myelopoietic factors and alarmins was higher in the APP/PS1 BM-HSPCs or in the BM-supernatants compared to the control. Frontal cortices of APP/PS1 mice showed higher number of pro-inflammatory macrophages (CD11b+F4/80+ or CD80+) and microglia (OX42+Iba1+).
    UNASSIGNED: These findings show that AD pathology in APP/PS1 mice is associated with upregulated myelopoiesis, which contributes to the brain inflammation and decreased vascularity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们阐明了唐氏综合症(DS)患者的某些皮质层中易受损害的兴奋性神经元的分子指纹,以了解机制和治疗潜力,这也为阿尔茨海默氏病(AD)的病理生理学提供了信息。从死后的人DS以及年龄和性别匹配的对照(CTR)微分离额叶皮质(BA9)层III(L3)和层V(L5)锥体神经元,以询问差异表达基因(DEG)和与神经退行性程序相关的关键生物学途径。我们在DS与CTR受试者的个体中鉴定出>2300DEGs表现出L3和L5锥体神经元中基因表达的趋同失调。DEGs在L3和L5神经元中包含超过100个重复的人类21号染色体基因,在两个薄片中都显示出三体神经元核型。此外,数以千计的其他DEG被识别,表明基因失调不仅限于老年DS大脑中的三体基因,我们推测这与AD病理生物学有关。ConvergentL3和L5DEGs强调了相关的生物学途径,并确定了可能是DS患者皮质皮质神经变性和相关认知功能下降的关键途径相关靶点。选择关键的DEG被询问为潜在的枢纽基因驱动失调,即三重DEGs淀粉样前体蛋白(APP)和超氧化物歧化酶1(SOD1),连同关键信号DEGs,包括丝裂原活化蛋白激酶1和3(MAPK1,MAPK3)和钙钙调蛋白依赖性蛋白激酶IIα(CAMK2A),在其他人中。从多个途径分析中确定的集线器DEGs确定了改善皮质神经元功能障碍和DS认知下降的潜在治疗候选物,与AD相关。
    We elucidated the molecular fingerprint of vulnerable excitatory neurons within select cortical lamina of individuals with Down syndrome (DS) for mechanistic understanding and therapeutic potential that also informs Alzheimer\'s disease (AD) pathophysiology. Frontal cortex (BA9) layer III (L3) and layer V (L5) pyramidal neurons were microisolated from postmortem human DS and age- and sex-matched controls (CTR) to interrogate differentially expressed genes (DEGs) and key biological pathways relevant to neurodegenerative programs. We identified > 2300 DEGs exhibiting convergent dysregulation of gene expression in both L3 and L5 pyramidal neurons in individuals with DS versus CTR subjects. DEGs included over 100 triplicated human chromosome 21 genes in L3 and L5 neurons, demonstrating a trisomic neuronal karyotype in both laminae. In addition, thousands of other DEGs were identified, indicating gene dysregulation is not limited to trisomic genes in the aged DS brain, which we postulate is relevant to AD pathobiology. Convergent L3 and L5 DEGs highlighted pertinent biological pathways and identified key pathway-associated targets likely underlying corticocortical neurodegeneration and related cognitive decline in individuals with DS. Select key DEGs were interrogated as potential hub genes driving dysregulation, namely the triplicated DEGs amyloid precursor protein (APP) and superoxide dismutase 1 (SOD1), along with key signaling DEGs including mitogen activated protein kinase 1 and 3 (MAPK1, MAPK3) and calcium calmodulin dependent protein kinase II alpha (CAMK2A), among others. Hub DEGs determined from multiple pathway analyses identified potential therapeutic candidates for amelioration of cortical neuron dysfunction and cognitive decline in DS with translational relevance to AD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    单一单位(SU)活动-从一个神经元分离的动作电位-传统上被用来将神经元活动与行为联系起来。然而,最近的研究表明,多单位(MU)活动-在一个微电极附近记录的整体神经活动-也可能包含与任务相关的神经群体动力学的准确估计。这里,使用既定的模型拟合方法,在记忆引导的扫视任务中,我们将SU响应场的空间代码与从头部不受约束的猴子(Macacamulatta)的前眼场(FEF)记录的相应MU响应场进行了比较。总的来说,SU和MU群体都显示出简单的视觉运动转换:视觉响应编码的目标在眼睛坐标,在延迟期间逐渐向扫视运动响应中的未来凝视代码过渡。然而,SU人口显示出额外的二级代码,包括视觉响应中的预测性注视代码和运动响应中的目标代码的保留。Further,当SU被分成规则/快速尖峰神经元时,这些细胞类型在延迟后期显示出不同的空间代码进展,仅在最后的扫视运动响应期间收敛于注视编码。最后,重建MU群体(通过对相同位点内的SU数据求和)未能复制SU或MU模式。这些结果证实了MU活性记录作为基本感觉运动转化的生物标志物的理论和实践潜力(例如,动眼系统中的目标到凝视编码),同时也强调了SU活动对编码更微妙的重要性(例如,预测/记忆)感觉运动行为的方面。显著性陈述多单位记录(来自多个神经元的未分化信号)相对容易记录,并提供神经动力学的简化估计,但是不清楚保留了哪些单单元信号,放大,或丢失。这里,我们比较了单/多单位活动从一个明确的结构(额眼领域)和行为(记忆延迟扫视任务),通过时间跟踪他们的空间代码。在单单位活动中观察到的从目标到凝视编码的渐进转换保留在多单位活动中,但其他认知信号(初始视觉反应内的凝视预测,最终运动响应内的目标记忆,和细胞特异性延迟信号)丢失。这表明多单位活动为健康的感觉运动转化提供了极好的生物标志物,以错过更微妙的认知信号为代价。
    Single-unit (SU) activity-action potentials isolated from one neuron-has traditionally been employed to relate neuronal activity to behavior. However, recent investigations have shown that multiunit (MU) activity-ensemble neural activity recorded within the vicinity of one microelectrode-may also contain accurate estimations of task-related neural population dynamics. Here, using an established model-fitting approach, we compared the spatial codes of SU response fields with corresponding MU response fields recorded from the frontal eye fields (FEFs) in head-unrestrained monkeys (Macaca mulatta) during a memory-guided saccade task. Overall, both SU and MU populations showed a simple visuomotor transformation: the visual response coded target-in-eye coordinates, transitioning progressively during the delay toward a future gaze-in-eye code in the saccade motor response. However, the SU population showed additional secondary codes, including a predictive gaze code in the visual response and retention of a target code in the motor response. Further, when SUs were separated into regular/fast spiking neurons, these cell types showed different spatial code progressions during the late delay period, only converging toward gaze coding during the final saccade motor response. Finally, reconstructing MU populations (by summing SU data within the same sites) failed to replicate either the SU or MU pattern. These results confirm the theoretical and practical potential of MU activity recordings as a biomarker for fundamental sensorimotor transformations (e.g., target-to-gaze coding in the oculomotor system), while also highlighting the importance of SU activity for coding more subtle (e.g., predictive/memory) aspects of sensorimotor behavior.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    转录谱分析已成为调查神经系统的常用工具。在分析过程中,差异表达结果通常与功能本体数据库进行比较,其中包含代表经过充分研究的途径的精选基因集。这种依赖性可以导致神经科学研究被解释为在更好的研究组织中记录的功能途径(例如,肝脏)和主题(例如,cancer),系统地强调研究良好的基因,将其他发现留在大脑的默默无闻“无知”中。为了解决这个问题,我们编制了一个918个与神经系统功能相关的基因集的数据库,组织,和细胞类型(“大脑。GMT\“),可在通用分析管道(GSEA,limma,edgeR)来解释来自三个物种(大鼠,鼠标,human).大脑。GMT包括从分子签名数据库(MSigDB)中筛选并从公共数据库中提取的大脑相关基因集(GeneWeaver,Gemma,DropViz,BrainInABlender,HippoSeq)和已发表的包含差异表达结果的研究。虽然大脑。GMT仍在发展中,目前仅代表一小部分可用的大脑基因集,“大脑无知”基因已经比传统的基因本体论数据库更好地表示。此外,大脑。GMT大大提高了在神经科学研究中鉴定为富含差异表达的基因集的数量和质量,加强解释。•我们编制了一个与神经系统功能相关的918个基因集的数据库,组织,和细胞类型(“大脑。GMT\“)。•Brain.GMT可用于通用分析管道(GSEA,limma,edgeR)来解释来自三个物种(大鼠,鼠标,human).•虽然大脑。GMT仍在发展中,它大大改善了我们最初用例中差异表达结果的解释。
    Transcriptional profiling has become a common tool for investigating the nervous system. During analysis, differential expression results are often compared to functional ontology databases, which contain curated gene sets representing well-studied pathways. This dependence can cause neuroscience studies to be interpreted in terms of functional pathways documented in better studied tissues (e.g., liver) and topics (e.g., cancer), and systematically emphasizes well-studied genes, leaving other findings in the obscurity of the brain \"ignorome\". To address this issue, we compiled a curated database of 918 gene sets related to nervous system function, tissue, and cell types (\"Brain.GMT\") that can be used within common analysis pipelines (GSEA, limma, edgeR) to interpret results from three species (rat, mouse, human). Brain.GMT includes brain-related gene sets curated from the Molecular Signatures Database (MSigDB) and extracted from public databases (GeneWeaver, Gemma, DropViz, BrainInABlender, HippoSeq) and published studies containing differential expression results. Although Brain.GMT is still undergoing development and currently only represents a fraction of available brain gene sets, \"brain ignorome\" genes are already better represented than in traditional Gene Ontology databases. Moreover, Brain.GMT substantially improves the quantity and quality of gene sets identified as enriched with differential expression in neuroscience studies, enhancing interpretation. •We compiled a curated database of 918 gene sets related to nervous system function, tissue, and cell types (\"Brain.GMT\").•Brain.GMT can be used within common analysis pipelines (GSEA, limma, edgeR) to interpret neuroscience transcriptional profiling results from three species (rat, mouse, human).•Although Brain.GMT is still undergoing development, it substantially improved the interpretation of differential expression results within our initial use cases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    学习需要将行动与结果联系起来的能力。动机如何促进学习还没有得到很好的理解。我们设计了一个行为任务,其中小鼠自我启动试验来学习提示-奖励偶然性,并发现前额叶皮层(ACC)的前扣带回区域包含与动机相关的信号,以最大化奖励。特别是,我们发现,ACC神经活动始终与试验启动相关,在试验启动中,小鼠试图留下未得到奖励的线索,以达到与奖励相关的线索.值得注意的是,这种神经信号在连续的未得到奖励的提示中持续存在,直到达到与奖励相关的提示,并且是学习所必需的。为了确定ACC如何继承此激励信号,我们在学习过程中从多个输入到ACC执行了投影特定的测光记录。在这样做的时候,我们发现,当小鼠接受未得到奖励的提示时,眶额皮质(OFC)到ACC投影中的大量神经活动出现了斜坡,它继续跨越连续的未得到回报的线索,最终达到了与奖励相关的提示,从而保持一个扩展的激励状态。OFC的细胞分辨率成像证实了这些动机的神经相关性,并进一步描绘了依次平铺斜坡的神经元的单独集合。一起,这些结果确定了OFC映射出任务结构以将扩展的动机状态传达给ACC以促进目标导向学习的机制。
    实现目标需要动力。个人可能必须多次完成一项任务才能获得未来的奖励。例如,动物可能需要反复觅食才能找到食物,或者一个人可能必须学习才能在考试中获得好成绩。这些复杂的行为是如何在大脑中编码的,目前还没有完全理解。大脑额叶皮层受伤的患者缺乏追求目标的动力。这一发现表明,额叶皮层在动机和目标导向行为中起着至关重要的作用。动物研究表明,他们大脑额叶皮层的一部分,前扣带皮质(ACC),帮助他们保持动力,并为实现目标付出额外的努力。然而,科学家想知道特定的行动是如何与特定的目标相关联的,并怀疑眶额叶皮层(OFC)包含支持这种关联的蓝图。Regalado等人。表明OFC和ACC在小鼠的目标寻求行为过程中协同工作。在实验中,小鼠学会了完成一项任务以获得糖水奖励。当老鼠在学习时,Regalado等人。在ACC中记录活动,发现ACC在寻求目标行为期间是活跃的。他们还发现,OFC中神经元的活动随着小鼠没有获得奖励的时间延长而增加,直到获得奖励,发出激励状态的信号。没有足够的动机来最大化其奖励的动物没有增加的OFC活性。实验还表明,OFC中的动机信号被传达给ACC,以支持目标导向学习,特别是将行动与积极的未来成果联系起来。实验有助于解释OFC中神经元活动的增加如何有助于增加ACC支持的动机和目标寻求行为。更多的研究将帮助科学家更多地了解这些过程,并开发药物或其他疗法,可以帮助那些因受伤或精神疾病而学习困难或动力挣扎的人。
    Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward-associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection-specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward-associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.
    Achieving goals takes motivation. An individual may have to complete a task many times for a future reward. For example, an animal may have to forage repeatedly to find food, or a person may have to study to get a good grade on a test. How these complex behaviors are encoded in the brain’s wiring is not fully understood. Patients with injuries to the frontal cortex of the brain display a lack of motivation to pursue goals. This discovery suggests the frontal cortex plays a vital role in motivation and goal-directed behavior. Animal studies show that part of their brain\'s frontal cortex, the anterior cingulate cortex (ACC), helps them stay motivated and put extra effort into achieving goals. Yet, scientists wonder how particular actions are associated with specific goals and suspect the orbital frontal cortex (OFC) contains the blueprint to support this association. Regalado et al. show that the OFC and ACC work together during goal-seeking behavior in mice. In the experiments, mice learned to complete a task to achieve a sugar water reward. As the mice were learning, Regalado et al. recorded activity in the ACC and found that the ACC is active during goal-seeking behavior. They also discovered that the activity of neurons in the OFC increased the longer mice went without receiving a reward, up until the reward was achieved, signaling a motivational state. Animals not motivated enough to maximize their rewards did not have an increased OFC activity. The experiments also showed that the motivational signals in the OFC were conveyed to ACC to support goal-directed learning, especially linking actions to positive future outcomes. The experiments help explain how an increase in neuronal activity in the OFC helps to increase motivation and goal-seeking behavior supported by the ACC. More studies will help scientists learn more about these processes and develop drugs or other therapies that can help people who have learning difficulties or struggle with motivation because of an injury or mental illness.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Analysis of the mechanisms underlying autism spectrum disorder (ASD) is an urgent task due to the ever-increasing prevalence of this condition. The study of critical periods of neuroontogenesis is of interest, since the manifestation of ASD is often associated with prenatal disorders of the brain development. One of the currently promising hypotheses postulates a connection between the pathogenesis of ASD and the dysfunction of neurotransmitters and neurotrophins. In this study, we investigated the expression of key dopamine receptors (Drd1, Drd2), brain-derived neurotrophic factor (Bdnf), its receptors (Ntrkb2, Ngfr) and the transcription factor Creb1 that mediates BDNF action, as well as cerebral dopamine neurotrophic factor (Cdnf) during the critical periods of embryogenesis (e14 and e18) and postnatal development (p14, p28, p60) in the hippocampus and frontal cortex of BTBR mice with autism-like behavior compared to the neurotypical C57BL/6 J strain. In BTBR embryos, on the 14th day of prenatal development, an increase in the expression of the Ngfr gene encoding the p75NTR receptor, which may lead to the activation of apoptosis, was found in the hippocampus and frontal cortex. A decrease in the expression of Cdnf, Bdnf and its receptor Ntrkb2, as well as dopamine receptors (Drd1, Drd2) was detected in BTBR mice in the postnatal period of ontogenesis mainly in the frontal cortex, while in the hippocampus of mature mice (p60), only a decrease in the Drd2 mRNA level was revealed. The obtained results suggest that the decrease in the expression levels of CDNF, BDNF-TrkB and dopamine receptors in the frontal cortex in the postnatal period can lead to significant changes in both the morphology of neurons and dopamine neurotransmission in cortical brain structures. At the same time, the increase in p75NTR receptor gene expression observed on the 14th day of embryogenesis, crucial for hippocampus and frontal cortex development, may have direct relevance to the manifestation of early autism.
    Анализ механизмов расстройства аутистического спектра (РАС) является актуальной задачей в связи с широкой и постоянно растущей распространенностью этого состояния. Исследование критических периодов нейроонтогенеза представляет интерес, поскольку манифестацию РАС нередко связывают с внутриутробными нарушениями развития головного мозга. Одна из перспективных на сегодняшний день гипотез постулирует связь патогенеза РАС с дисфункцией нейротрансмиттерных и нейротрофических систем. В настоящей работе исследована экспрессия генов ключевых рецепторов дофамина (Drd1, Drd2), нейротрофического фактора мозга (Bdnf), его рецепторов (Ntrkb2, Ngfr) и опосредующего действие BDNF транскрипционного фактора Creb1, а также дофаминового нейротрофического фактора (Cdnf) в периоды эмбриогенеза (e14 и е18) и постнатального развития (р14, р28, р60) в гиппокампе и фронтальной коре мышей BTBR с аутистизм-подобным поведением по сравнению с нейротипичной линией С57BL/6 J. У эмбрионов BTBR на 14-й день пренатального развития в гиппокампе и во фронтальной коре установлено увеличение экспрессии гена Ngfr, кодирующего рецептор p75NTR, трансдукция сигнала которого в эмбриогенезе приводит к активации апоптоза. Снижение экспрессии генов Cdnf, Bdnf и его рецептора Ntrkb2, а также дофаминовых рецепторов (Drd1, Drd2) у мышей BTBR обнаружено в постнатальный период преимущественно во фронтальной коре, при этом в гиппокампе у половозрелых особей (р60) зафиксировано падение уровня лишь мРНК Drd2. Полученные результаты позволяют предположить, что снижение в постнатальном периоде экспрессии генов Cdnf, Bdnf и Ntrkb2, а также дофаминовых рецепторов во фронтальной коре может приводить к существенным изменениям, характерным для РАС, как морфологии нейронов, так и дофаминовой нейротрансмиссии в корковых структурах мозга. Вместе с тем установленный рост экспрессии p75NTR в критический для развития гиппокампа и фронтальной коры 14-й день эмбриогенеза, возможно, является ключевым для формирования раннего аутизма.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    轻度创伤性脑损伤(mTBI)的复杂病理学是难以实现成功治疗方案的主要原因。甲状腺素(T4)的给药已被证明可以预防mTBI引起的小鼠认知障碍,但其机制尚不清楚。要了解潜在的机制,在mTBI小鼠模型中,我们进行了一项单细胞转录组学研究,以研究T4对损伤后三个阶段海马和额叶皮质单个细胞类型的时空影响.我们发现T4处理改变了跨组织和时间点的许多细胞类型的比例和转录组,特别是少突胶质细胞,星形胶质细胞,和小胶质细胞,这对损伤修复至关重要。T4还逆转了受mTBI影响的基因如Ttr的表达,mt-Rnr2,Ggn12,Malat1,Gnaq,还有Myo3a,以及许多途径,如细胞/能量/铁代谢,免疫反应,神经系统,和细胞骨架相关途径。细胞类型特定的网络建模表明,T4减轻了与细胞周期相关的子网络中选择mTBI扰动的动态移位,应激反应,和少突胶质细胞中的RNA加工。跨细胞型配体-受体网络揭示了App的作用,mTBI中的Hmgb1、Fn1和Tnf,后两种配体先前已被确定为TBI网络集线器。mTBI和/或T4标记基因被富集用于人类全基因组关联研究(GWAS)候选基因,与mTBI相关的精神和神经退行性疾病。我们的系统级单细胞分析阐明了细胞类型特异性基因的时间和空间动态重编程,通路,和网络,以及细胞间通讯作为T4减轻mTBI诱导的认知功能障碍的机制。
    The complex pathology of mild traumatic brain injury (mTBI) is a main contributor to the difficulties in achieving a successful therapeutic regimen. Thyroxine (T4) administration has been shown to prevent the cognitive impairments induced by mTBI in mice but the mechanism is poorly understood. To understand the underlying mechanism, we carried out a single cell transcriptomic study to investigate the spatiotemporal effects of T4 on individual cell types in the hippocampus and frontal cortex at three post-injury stages in a mouse model of mTBI. We found that T4 treatment altered the proportions and transcriptomes of numerous cell types across tissues and timepoints, particularly oligodendrocytes, astrocytes, and microglia, which are crucial for injury repair. T4 also reversed the expression of mTBI-affected genes such as Ttr, mt-Rnr2, Ggn12, Malat1, Gnaq, and Myo3a, as well as numerous pathways such as cell/energy/iron metabolism, immune response, nervous system, and cytoskeleton-related pathways. Cell-type specific network modeling revealed that T4 mitigated select mTBI-perturbed dynamic shifts in subnetworks related to cell cycle, stress response, and RNA processing in oligodendrocytes. Cross cell-type ligand-receptor networks revealed the roles of App, Hmgb1, Fn1, and Tnf in mTBI, with the latter two ligands having been previously identified as TBI network hubs. mTBI and/or T4 signature genes were enriched for human genome-wide association study (GWAS) candidate genes for cognitive, psychiatric and neurodegenerative disorders related to mTBI. Our systems-level single cell analysis elucidated the temporal and spatial dynamic reprogramming of cell-type specific genes, pathways, and networks, as well as cell-cell communications as the mechanisms through which T4 mitigates cognitive dysfunction induced by mTBI.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号