evolutionary theory

进化论
  • 文章类型: Journal Article
    全基因组复制(多倍体)会带来许多并发症,但却是真核进化的重要驱动力。为了通过实验研究在多倍体进化中克服了多少从细胞(包括基因表达)到生活史水平的挑战,一个系统,其中多倍体可以可靠地诱导和持续世代是至关重要的。直到现在,这对动物来说是不可能的,众所周知,多倍体会导致第一代致命。类寄生虫黄蜂Nasoniavitripennis是一个非常合适的模型。在该单倍体系统中,可以通过(1)沉默性别决定级联中的基因和(2)通过秋水仙碱注射诱导减数分裂分离失败来诱导多倍体。Nasonia多倍体在短时间内产生许多世代,使它们成为实验进化研究的有力工具。在Nasonia多倍体表型中观察到的强烈变异有助于鉴定多倍体机制,这是进化死角和成功之间的差异。多倍体进化研究得益于数十年的Nasonia研究,这些研究产生了广泛的参考组学数据集,促进多倍体对基因组和转录组影响的高级研究。还可以创建近交系(以控制遗传背景效应)和近交系(以进行多倍体选择方案)。种间杂交的选择进一步允许将自身多倍体(种内多倍体)与异源多倍体(杂种多倍体)直接对比。Nasonia还可用于研究在生物防治中使用多倍体的新生领域,以改善田间表现并降低生态风险。总之,Nasonia多倍体是研究各种生物学范式的特殊工具。
    Whole-genome duplication (polyploidy) poses many complications but is an important driver for eukaryotic evolution. To experimentally study how many challenges from the cellular (including gene expression) to the life history levels are overcome in polyploid evolution, a system in which polyploidy can be reliably induced and sustained over generations is crucial. Until now, this has not been possible with animals, as polyploidy notoriously causes first-generation lethality. The parasitoid wasp Nasonia vitripennis emerges as a stunningly well-suited model. Polyploidy can be induced in this haplodiploid system through (1) silencing genes in the sex determination cascade and (2) by colchicine injection to induce meiotic segregation failure. Nasonia polyploids produce many generations in a short time, making them a powerful tool for experimental evolution studies. The strong variation observed in Nasonia polyploid phenotypes aids the identification of polyploid mechanisms that are the difference between evolutionary dead ends and successes. Polyploid evolution research benefits from decades of Nasonia research that produced extensive reference-omics data sets, facilitating the advanced studies of polyploid effects on the genome and transcriptome. It is also possible to create both inbred lines (to control for genetic background effects) and outbred lines (to conduct polyploid selection regimes). The option of interspecific crossing further allows to directly contrast autopolyploidy (intraspecific polyploidy) to allopolyploidy (hybrid polyploidy). Nasonia can also be used to investigate the nascent field of using polyploidy in biological control to improve field performance and lower ecological risk. In short, Nasonia polyploids are an exceptional tool for researching various biological paradigms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    进化理论对我们对世界的理解和管理产生了巨大的影响,部分原因是它能够成功地整合新数据和新见解。尽管如此,目前,某些生物学现象与主流进化论之间存在紧张关系。例如,分子表观遗传变化的遗传如何适应主流进化理论?生态位构建是一个进化过程吗?通过栖息地选择的局部适应也是适应性进化吗?这些例子表明有范围(甚至可能是需要)扩大我们对进化的看法。我们确定了三个方面,这些方面纳入单一框架将使理解和研究适应性进化成为一种更普遍的方法:(i)扩展表型的扩展观点;(ii)性状可以相互响应;(iii)遗传可以是非遗传的。我们使用因果模型将这三个方面与驱动和允许自适应进化的变量和机制的既定观点相结合。我们的因果模型将适应性父母反应的自然选择和非遗传遗传鉴定为适应性进化的两个互补但不同和独立的驱动因素。这两个驱动因素都符合价格方程;具体来说,父母反应的非遗传遗传被Price方程中经常被忽视的部分捕获。我们的因果模型是通用的和简化的,但可以在变量和因果联系方面灵活调整,取决于研究问题和/或生物系统。通过回顾上面给出的三个例子,我们展示了如何使用它作为一个启发式工具来澄清概念问题,并帮助设计实证研究。与仅从遗传变化角度定义进化的基因中心观点相反,我们的广义方法使我们能够将进化视为整个因果结构的变化,不仅包括遗传,还包括表型和环境变量。
    Evolutionary theory has made large impacts on our understanding and management of the world, in part because it has been able to incorporate new data and new insights successfully. Nonetheless, there is currently a tension between certain biological phenomena and mainstream evolutionary theory. For example, how does the inheritance of molecular epigenetic changes fit into mainstream evolutionary theory? Is niche construction an evolutionary process? Is local adaptation via habitat choice also adaptive evolution? These examples suggest there is scope (and perhaps even a need) to broaden our views on evolution. We identify three aspects whose incorporation into a single framework would enable a more generalised approach to the understanding and study of adaptive evolution: (i) a broadened view of extended phenotypes; (ii) that traits can respond to each other; and (iii) that inheritance can be non-genetic. We use causal modelling to integrate these three aspects with established views on the variables and mechanisms that drive and allow for adaptive evolution. Our causal model identifies natural selection and non-genetic inheritance of adaptive parental responses as two complementary yet distinct and independent drivers of adaptive evolution. Both drivers are compatible with the Price equation; specifically, non-genetic inheritance of parental responses is captured by an often-neglected component of the Price equation. Our causal model is general and simplified, but can be adjusted flexibly in terms of variables and causal connections, depending on the research question and/or biological system. By revisiting the three examples given above, we show how to use it as a heuristic tool to clarify conceptual issues and to help design empirical research. In contrast to a gene-centric view defining evolution only in terms of genetic change, our generalised approach allows us to see evolution as a change in the whole causal structure, consisting not just of genetic but also of phenotypic and environmental variables.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号