catalytic domain

催化域
  • 文章类型: Journal Article
    来自丝状真菌的糖苷水解酶家族3(GH3)β-葡萄糖苷酶是促进木质纤维素完全降解的关键工业酶,通过将纤维寡糖和纤维二糖转化为葡萄糖。了解不同领域的组织对于阐明其生物学作用和潜在的生物技术应用至关重要。本研究探讨了GH3β-葡萄糖苷酶内域组织的变异性。在真菌GH3β-葡萄糖苷酶中鉴定出两种不同的构型,一个仅包含GH3催化结构域的,和另一个掺入具有C-末端纤连蛋白III型(Fn3)结构域的GH3结构域。值得注意的是,丝状链霉菌展示了单独的GH3蛋白进化枝,将GH3结构域连接到家族2的碳水化合物结合模块(CBM2)。作为探索辅助结构域在β-葡萄糖苷酶活性中的作用的第一步,开发了一种在bglA缺失突变体宿主中利用特征良好的黑曲霉β-葡萄糖苷酶基因(bglA)的筛选系统。基于这个筛选系统,重新引入天然GH3-Fn3基因成功地表达了允许使用不同酶测定检测蛋白质的基因。进一步研究辅助结构域在GH3家族蛋白中的作用,包括那些来自链霉菌的,将需要设计用于工业应用的改进的嵌合β-葡萄糖苷酶。
    The glycoside hydrolase family 3 (GH3) β-glucosidases from filamentous fungi are crucial industrial enzymes facilitating the complete degradation of lignocellulose, by converting cello-oligosaccharides and cellobiose into glucose. Understanding the diverse domain organization is essential for elucidating their biological roles and potential biotechnological applications. This research delves into the variability of domain organization within GH3 β-glucosidases. Two distinct configurations were identified in fungal GH3 β-glucosidases, one comprising solely the GH3 catalytic domain, and another incorporating the GH3 domain with a C-terminal fibronectin type III (Fn3) domain. Notably, Streptomyces filamentous bacteria showcased a separate clade of GH3 proteins linking the GH3 domain to a carbohydrate binding module from family 2 (CBM2). As a first step to be able to explore the role of accessory domains in β-glucosidase activity, a screening system utilizing the well-characterised Aspergillus niger β-glucosidase gene (bglA) in bglA deletion mutant host was developed. Based on this screening system, reintroducing the native GH3-Fn3 gene successfully expressed the gene allowing detection of the protein using different enzymatic assays. Further investigation into the role of the accessory domains in GH3 family proteins, including those from Streptomyces, will be required to design improved chimeric β-glucosidases enzymes for industrial application.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    胶原蛋白的翻译后加工对于其正确的组装和功能至关重要。胶原蛋白加工的破坏导致组织发育和结构紊乱,例如成骨不全症(OI)。与OI相关的胶原蛋白加工机器包括3-羟化酶1(P3H1),肽基氨酰顺反异构酶B(PPIB),和软骨相关蛋白(CRTAP),其结构组织和机制不明确。我们确定了P3H1/CRTAP/PPIB复合物的低温-EM结构。P3H1和PPIB的活性位点形成面对面的双功能反应中心,指示耦合的修改机制。P3H1/CRTAP/PPIB/胶原肽复合物的结构揭示了多个结合位点,暗示了一个底物相互作用区。出乎意料的是,观察到二元三元络合物,三元和二元三元状态之间的平衡可以通过P3H1/PPIB活性位点的突变和PPIB抑制剂的添加而改变。这些发现为P3H1/CRTAP/PPIB加工胶原蛋白的结构基础和胶原蛋白相关疾病的分子病理学提供了见解。
    Collagen posttranslational processing is crucial for its proper assembly and function. Disruption of collagen processing leads to tissue development and structure disorders like osteogenesis imperfecta (OI). OI-related collagen processing machinery includes prolyl 3-hydroxylase 1 (P3H1), peptidyl-prolyl cis-trans isomerase B (PPIB), and cartilage-associated protein (CRTAP), with their structural organization and mechanism unclear. We determine cryo-EM structures of the P3H1/CRTAP/PPIB complex. The active sites of P3H1 and PPIB form a face-to-face bifunctional reaction center, indicating a coupled modification mechanism. The structure of the P3H1/CRTAP/PPIB/collagen peptide complex reveals multiple binding sites, suggesting a substrate interacting zone. Unexpectedly, a dual-ternary complex is observed, and the balance between ternary and dual-ternary states can be altered by mutations in the P3H1/PPIB active site and the addition of PPIB inhibitors. These findings provide insights into the structural basis of collagen processing by P3H1/CRTAP/PPIB and the molecular pathology of collagen-related disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在真核生物中,前导链DNA由Polε合成,滞后链由Polδ合成。当与DNA夹PCNA配对时,这些复制聚合酶具有更高的持续合成能力。虽然已经确定了酵母Polε催化结构域的结构,Polε如何与PCNA相互作用在任何真核生物中都是未知的,人类或酵母。在这里,我们报告了人类Polε-PCNA-DNA复合物的两种低温EM结构,一个处于进入的核苷酸结合状态,另一个处于核苷酸交换状态。结构揭示了Pole催化结构域与PCNA之间意想不到的三点界面,具有保守的PIP(PCNA相互作用肽)基序,唯一的P域,和拇指结构域各自与PCNA三聚体的不同原聚体相互作用。我们建议,当PCNA与Pole一起工作时,多点接口可防止其他包含PIP的因素招募到PCNA。两种状态的比较表明,指状结构域围绕P结构域的含[4Fe-4S]簇的尖端旋转,以调节核苷酸交换和传入的核苷酸结合。
    In eukaryotes, the leading strand DNA is synthesized by Polε and the lagging strand by Polδ. These replicative polymerases have higher processivity when paired with the DNA clamp PCNA. While the structure of the yeast Polε catalytic domain has been determined, how Polε interacts with PCNA is unknown in any eukaryote, human or yeast. Here we report two cryo-EM structures of human Polε-PCNA-DNA complex, one in an incoming nucleotide bound state and the other in a nucleotide exchange state. The structures reveal an unexpected three-point interface between the Polε catalytic domain and PCNA, with the conserved PIP (PCNA interacting peptide)-motif, the unique P-domain, and the thumb domain each interacting with a different protomer of the PCNA trimer. We propose that the multi-point interface prevents other PIP-containing factors from recruiting to PCNA while PCNA functions with Polε. Comparison of the two states reveals that the finger domain pivots around the [4Fe-4S] cluster-containing tip of the P-domain to regulate nucleotide exchange and incoming nucleotide binding.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于BsCotA漆酶具有优异的热稳定性,因此具有工业应用的前景。在这项研究中,我们的目标是通过修饰活性位点口袋来提高BsCotA的催化效率。我们采用了将活性位点口袋的多样性设计与分子对接筛选相结合的策略,这导致选择五个变体进行表征。所有五个变体都证明了功能,其中4人的周转率有所提高。最有效的变体表现出显著的7.7倍提高的催化效率,从1.54×105M-1s-1发展到1.18×106M-1s-1,没有任何稳定性损失。为了研究潜在的分子机制,我们对我们的变体进行了全面的结构分析。分析表明,用芳香族残基取代Leu386可以增强BsCotA适应2,2'-偶氮-二-(3-乙基苯并噻唑啉)-6-磺酸盐(ABTS)底物的能力。然而,包含带电残留物,G323D和G417H,进入活动位点口袋减少kcat。最终,我们的研究有助于更深入地了解漆酶活性位点袋中的残基所起的作用,同时成功证明了一种提高BsCotA催化效率的方法。关键点:•增强BsCotA漆酶效率的活性位点口袋设计•催化速率提高7.7倍•所有测试的变体保持热稳定性。
    BsCotA laccase is a promising candidate for industrial application due to its excellent thermal stability. In this research, our objective was to enhance the catalytic efficiency of BsCotA by modifying the active site pocket. We utilized a strategy combining the diversity design of the active site pocket with molecular docking screening, which resulted in selecting five variants for characterization. All five variants proved functional, with four demonstrating improved turnover rates. The most effective variants exhibited a remarkable 7.7-fold increase in catalytic efficiency, evolved from 1.54 × 105 M-1 s-1 to 1.18 × 106 M-1 s-1, without any stability loss. To investigate the underlying molecular mechanisms, we conducted a comprehensive structural analysis of our variants. The analysis suggested that substituting Leu386 with aromatic residues could enhance BsCotA\'s ability to accommodate the 2,2\'-azino-di-(3-ethylbenzothiazoline)-6-sulfonate (ABTS) substrate. However, the inclusion of charged residues, G323D and G417H, into the active site pocket reduced kcat. Ultimately, our research contributes to a deeper understanding of the role played by residues in the laccases\' active site pocket, while successfully demonstrating a method to lift the catalytic efficiency of BsCotA. KEY POINTS: • Active site pocket design that enhanced BsCotA laccase efficiency • 7.7-fold improved in catalytic rate • All tested variants retain thermal stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核苷酸转移酶(NTases)控制不同的生理过程,包括RNA修饰,DNA复制和修复,抗生素耐药性。结核分枝杆菌NTase毒素家族,MenT,修饰tRNA以阻断翻译。MenT毒素活性可受到多种MenA抗毒素的严格调节。在MenT同系物之间,没有统一的机制将抗毒性联系起来。在这里,我们通过结构演示,生物化学,生物物理和计算研究表明,尽管缺乏激酶基序,抗毒素MenA1通过将MenT1磷酸受体T39活性位点残基重新定位到结合的核苷酸来诱导MenT1的自动磷酸化。最后,我们扩展了这个预测模型,以解释无关的抗毒素MenA3如何同样能够诱导同源毒素MenT3的自磷酸化.我们的研究揭示了控制结核毒素的保守机制,并证明了活性位点自磷酸化如何调节广泛的NTase的活性。
    Nucleotidyltransferases (NTases) control diverse physiological processes, including RNA modification, DNA replication and repair, and antibiotic resistance. The Mycobacterium tuberculosis NTase toxin family, MenT, modifies tRNAs to block translation. MenT toxin activity can be stringently regulated by diverse MenA antitoxins. There has been no unifying mechanism linking antitoxicity across MenT homologues. Here we demonstrate through structural, biochemical, biophysical and computational studies that despite lacking kinase motifs, antitoxin MenA1 induces auto-phosphorylation of MenT1 by repositioning the MenT1 phosphoacceptor T39 active site residue towards bound nucleotide. Finally, we expand this predictive model to explain how unrelated antitoxin MenA3 is similarly able to induce auto-phosphorylation of cognate toxin MenT3. Our study reveals a conserved mechanism for the control of tuberculosis toxins, and demonstrates how active site auto-phosphorylation can regulate the activity of widespread NTases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    糖原合成酶激酶3β(GSK-3β)响应于不同的上游信号而靶向特定的信号传导途径。我们使用结构和功能研究来剖析上游磷酸化步骤如何引发Wnt信号传导成分β-catenin被GSK-3β磷酸化以及支架相互作用如何促成该反应。我们与磷酸化的β-联蛋白肽结合的GSK-3β的晶体结构证实了与催化位点相邻的磷酸化残基的预期结合模式。β-连环蛋白的引发位点中的天冬氨酸磷酸异构体采用了无法区分的结构,但反应比天然的磷酸化底物慢约1000倍。该结果表明,单独的底物定位不足以进行催化,并且需要天然的磷化相互作用。我们还获得了GSK-3β的结构,该结构具有来自支架蛋白Axin的延伸肽,其结合亲和力比先前结晶的Axin片段更大。该结构既没有揭示产生更高亲和力的额外接触,也没有解释GSK-3β活性位点中的底物相互作用如何被远程Axin结合调节。一起,我们的发现表明,磷化和支架产生小的构象变化或变构效应,没有被捕获在晶体结构中,激活GSK-3β并促进β-连环蛋白磷酸化。这些结果突出了我们从结构中预测催化活性的能力的局限性,并且对天然磷性突变在激酶调节和磷酸位点进化中的作用具有潜在的意义。
    Glycogen synthase kinase 3β (GSK-3β) targets specific signaling pathways in response to distinct upstream signals. We used structural and functional studies to dissect how an upstream phosphorylation step primes the Wnt signaling component β-catenin for phosphorylation by GSK-3β and how scaffolding interactions contribute to this reaction. Our crystal structure of GSK-3β bound to a phosphoprimed β-catenin peptide confirmed the expected binding mode of the phosphoprimed residue adjacent to the catalytic site. An aspartate phosphomimic in the priming site of β-catenin adopted an indistinguishable structure but reacted approximately 1000-fold slower than the native phosphoprimed substrate. This result suggests that substrate positioning alone is not sufficient for catalysis and that native phosphopriming interactions are necessary. We also obtained a structure of GSK-3β with an extended peptide from the scaffold protein Axin that bound with greater affinity than that of previously crystallized Axin fragments. This structure neither revealed additional contacts that produce the higher affinity nor explained how substrate interactions in the GSK-3β active site are modulated by remote Axin binding. Together, our findings suggest that phosphopriming and scaffolding produce small conformational changes or allosteric effects, not captured in the crystal structures, that activate GSK-3β and facilitate β-catenin phosphorylation. These results highlight limitations in our ability to predict catalytic activity from structure and have potential implications for the role of natural phosphomimic mutations in kinase regulation and phosphosite evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    碳酸酐酶(CA)是一种普遍存在的锌金属酶家族,可催化二氧化碳可逆水合为碳酸氢盐和质子,在包括呼吸在内的各种生物过程中起着关键作用,钙化,酸碱平衡,和CO2固定。最近的研究扩大了对CA的理解,特别是来自不同生物来源的γ类,如致病菌,极端微生物,和嗜盐菌,揭示其独特的结构适应和功能机制,使其能够在极端环境条件下运行。本章讨论了X射线晶体学研究的综合催化机理和结构见解,强调在恶劣环境中赋予这些酶稳定性和活性的分子适应。它还探索了这些酶的调节机制,详述不同的调节剂如何与γ-CA的活性位点相互作用。与其他CA类别的比较分析阐明了这些酶的进化轨迹和功能多样化。这些知识的综合不仅揭示了CA生物学的基本方面,而且为治疗和工业应用开辟了新途径。特别是在设计病原菌的靶向抑制剂和开发用于极端条件下工业过程的生物催化剂方面。结构生物学的不断进步有望进一步深入了解这种酶家族,可能导致在医学和环境生物技术的新应用。
    Carbonic anhydrases (CAs) are a ubiquitous family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate and protons, playing pivotal roles in a variety of biological processes including respiration, calcification, acid-base balance, and CO2 fixation. Recent studies have expanded the understanding of CAs, particularly the γ-class from diverse biological sources such as pathogenic bacteria, extremophiles, and halophiles, revealing their unique structural adaptations and functional mechanisms that enable operation under extreme environmental conditions. This chapter discusses the comprehensive catalytic mechanism and structural insights from X-ray crystallography studies, highlighting the molecular adaptations that confer stability and activity to these enzymes in harsh environments. It also explores the modulation mechanism of these enzymes, detailing how different modulators interact with the active site of γ-CAs. Comparative analyzes with other CA classes elucidate the evolutionary trajectories and functional diversifications of these enzymes. The synthesis of this knowledge not only sheds light on the fundamental aspects of CA biology but also opens new avenues for therapeutic and industrial applications, particularly in designing targeted inhibitors for pathogenic bacteria and developing biocatalysts for industrial processes under extreme conditions. The continuous advancement in structural biology promises further insights into this enzyme family, potentially leading to novel applications in medical and environmental biotechnology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    β-碳酸酐酶(β-CA;EC4.2.1.1)是广泛的锌金属酶,其催化二氧化碳和碳酸氢盐的相互转化。它们已在许多致病性和非致病性细菌中分离,它们参与多种作用,往往与他们的成长和生存有关。β-CA在结构上远离其他类别的CA。在活动站点中,位于基本二聚体的界面,锌离子与两个半胱氨酸和一个组氨酸配位。根据锌离子上第四个配体的性质,β-CA已分为两个子组:I类具有锌开放构型,氢氧根离子完成金属配位,它是β-CA机制中的催化活性物质,类似于众所周知的α-CA,而在II类中,Asp残基代替了氢氧化物。后一种活性位点构型已显示为在pH低于8时典型的非活性形式。Asp-Argdyad被认为在调节II类β-CA中活性位点的打开和关闭的pH诱导的催化开关中起关键作用,通过置换锌结合的溶剂分子。非常适合碳酸氢盐的变构位点稳定了非活性形式。这个碳酸氢盐结合位点由保守的残基组成,严格连接到锌离子的配位状态。此外,护送地点是各种配体的混杂地点,包括碳酸氢盐,在二聚体界面,这可能是碳酸氢盐到达变构位点的途径。
    β-Carbonic anhydrases (β-CA; EC 4.2.1.1) are widespread zinc metalloenzymes which catalyze the interconversion of carbon dioxide and bicarbonate. They have been isolated in many pathogenic and non-pathogenic bacteria where they are involved in multiple roles, often related to their growth and survival. β-CAs are structurally distant from the CAs of other classes. In the active site, located at the interface of a fundamental dimer, the zinc ion is coordinated to two cysteines and one histidine. β-CAs have been divided in two subgroups depending on the nature of the fourth ligand on the zinc ion: class I have a zinc open configuration with a hydroxide ion completing the metal coordination, which is the catalytically active species in the mechanism proposed for the β-CAs similar to the well-known of α-CAs, while in class II an Asp residue substitute the hydroxide. This latter active site configuration has been showed to be typical of an inactive form at pH below 8. An Asp-Arg dyad is thought to play a key role in the pH-induced catalytic switch regulating the opening and closing of the active site in class II β-CAs, by displacing the zinc-bound solvent molecule. An allosteric site well-suited for bicarbonate stabilizes the inactive form. This bicarbonate binding site is composed by a triad of well conserved residues, strictly connected to the coordination state of the zinc ion. Moreover, the escort site is a promiscuous site for a variety of ligands, including bicarbonate, at the dimer interface, which may be the route for bicarbonate to the allosteric site.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    谷氨酸脱氢酶(GDH)是连接蛋白质和碳水化合物代谢的关键调节酶。结合基序重组和突变,设计了新颖的GDHs。嗜热GDH和苹果酸脱氢酶的基序重组旨在克服非水系统中的稳定性和活性折衷。通过分子动力学模拟研究了设计的AaDHs的结构相容性和动态协作。此外,多点突变提高了其对非天然底物的催化活性。氨基酸相互作用网络分析表明,高密度的氢键盐桥有利于稳定。最后,实验验证确定了AaDHs在非水体系中的动力学。离子液体[EMIM]BF4使Aa05的活性提高了1.78倍。这项研究提出了刚性基序组装和活性位点突变相结合的策略,用于在非水系统中具有高活性的稳健脱氢酶,这克服了活性-稳定性权衡效应。
    Glutamate dehydrogenases (GDH) serve as the key regulated enzyme that links protein and carbohydrate metabolism. Combined with motif reassembly and mutation, novel GDHs were designed. Motif reassembly of thermophilic GDH and malate dehydrogenase aims to overcome stability and activity tradeoff in nonaqueous systems. Structural compatibility and dynamic cooperation of the designed AaDHs were studied by molecular dynamics simulation. Furthermore, multipoint mutations improved its catalytic activity for unnatural substrates. Amino acid interaction network analysis indicated that the high density of hydrogen-bonded salt bridges is beneficial to the stability. Finally, the experimental verification determines the kinetics of AaDHs in a nonaqueous system. The activity of Aa05 was increased by 1.78-fold with ionic liquid [EMIM]BF4. This study presents the strategy of a combination of rigid motif assembly and mutations of active sites for robust dehydrogenases with high activity in the nonaqueous system, which overcomes the activity-stability tradeoff effect.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    必需氨基酸,从食物中摄取的色氨酸在许多代谢功能中起着至关重要的作用,具有广泛的生物学功能和应用。色氨酸通过提高营养成分和促进功能食品的发展对食品行业有益。编码色氨酸合酶的推定基因是在土壤鞘杆菌属Em02中首次鉴定的,该纤维质细菌使其固有地更环保。将该基因克隆并在外源宿主大肠杆菌中表达,阐明其功能。分子量为42KDa的重组色氨酸合酶以可溶性成分表达。使用吲哚和L-丝氨酸以及纯化的色氨酸合酶评估体内对色氨酸合酶的酶活性。色氨酸合酶的最佳酶活性记录在50ºC和pH7.0,在金属离子Mg2+的存在下得到改善,Sr2+和Mn2+,而Cu2+,Zn2+和Co2+被证明具有抑制作用。使用定点诱变,用K100Q证明了色氨酸合酶中HK-S-[GGGSN]-E-S的共有模式,S202A,G246A,E361A和S385A作为活性位点。色氨酸合酶已被证明具有β亚基的定义特征。色氨酸合酶最终可用于更大规模的色氨酸生产。其多样化的应用突出了提高食品的质量和健康益处的潜力,使其成为推进食品科学和技术的重要组成部分。
    Essential amino acid, tryptophan which intake from food plays a critical role in numerous metabolic functions, exhibiting extensive biological functions and applications. Tryptophan is beneficial for the food sector by enhancing nutritional content and promoting the development of functional foods. A putative gene encoding tryptophan synthase was the first identified in Sphingobacterium soilsilvae Em02, a cellulosic bacterium making it inherently more environmentally friendly. The gene was cloned and expressed in exogenous host Escherichia coli, to elucidate its function. The recombinant tryptophan synthase with a molecular weight 42 KDa was expressed in soluble component. The enzymatic activity to tryptophan synthase in vivo was assessed using indole and L-serine and purified tryptophan synthase. The optimum enzymatic activity for tryptophan synthase was recorded at 50 ºC and pH 7.0, which was improved in the presence of metal ions Mg2+, Sr2+ and Mn2+, whereas Cu2+, Zn2+ and Co2+ proved to be inhibitory. Using site-directed mutagenesis, the consensus pattern HK-S-[GGGSN]-E-S in the tryptophan synthase was demonstrated with K100Q, S202A, G246A, E361A and S385A as the active sites. Tryptophan synthase has been demonstrated to possess the defining characteristics of the β-subunits. The tryptophan synthase may eventually be useful for tryptophan production on a larger scale. Its diverse applications highlight the potential for improving both the quality and health benefits of food products, making it an essential component in advancing food science and technology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号