capsular polysaccharide

荚膜多糖
  • 文章类型: Journal Article
    促进健康的副杆菌,这是核心微生物组的一部分,最近受到了很多关注,显示其宿主的有益特性和作为新的生物治疗产品的潜力。然而,目前还没有研究研究使其维持在肠道微生物群中的分布式疟原虫的细胞表面分子和结构。此外,尽管双歧杆菌被强烈认为是一种肠道共生物种,对其宿主有好处,几部作品显示出有争议的结果,显示它是一种机会病原体。在这项研究中,我们报道了可能参与胶囊合成的基因簇,26个菌毛样和菌毛样细胞表面结构。并应用新的RfbA分型分类,以便更好地理解和表征与菌毛相关的有益/致病行为。两种不同类型的菌毛,在研究的26个基因组中鉴定出三种不同类型的菌毛和多达14个荚膜多糖基因座。此外,通过重排rfbA基因并在分类中增加第五组,将数据添加到rfbA型分类中改变了结局.总之,菌株在外部蛋白质结构方面的变异性可以解释先前观察到的品系间差异。但没有鉴定出与双歧杆菌有益或有害活性相关的特定结构。
    The health-promoting Parabacteroides distasonis, which is part of the core microbiome, has recently received a lot of attention, showing beneficial properties for its host and potential as a new biotherapeutic product. However, no study has yet investigated the cell surface molecules and structures of P. distasonis that allow its maintenance within the gut microbiota. Moreover, although P. distasonis is strongly recognized as an intestinal commensal species with benefits for its host, several works displayed controversial results, showing it as an opportunistic pathogen. In this study, we reported gene clusters potentially involved in the synthesis of capsule, fimbriae-like and pili-like cell surface structures in 26 P. distasonis genomes and applied the new RfbA-typing classification in order to better understand and characterize the beneficial/pathogenic behavior related to P. distasonis strains. Two different types of fimbriae, three different types of pilus and up to fourteen capsular polysaccharide loci were identified over the 26 genomes studied. Moreover, the addition of data to the rfbA-type classification modified the outcome by rearranging rfbA genes and adding a fifth group to the classification. In conclusion, the strain variability in terms of external proteinaceous structure could explain the inter-strain differences previously observed of P. distasonis adhesion capacities and its potential pathogenicity, but no specific structure related to P. distasonis beneficial or detrimental activity was identified.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    An important yet poorly understood facet of the life cycle of a successful pathogen is host-to-host transmission. Hospital-acquired infections (HAI) resulting from the transmission of drug-resistant pathogens affect hundreds of millions of patients worldwide. Klebsiella pneumoniae, a Gram-negative bacterium, is notorious for causing HAI, with many of these infections difficult to treat, as K. pneumoniae has become multidrug resistant. Epidemiological studies suggest that K. pneumoniae host-to-host transmission requires close contact and generally occurs through the fecal-oral route. Here, we describe a murine model that can be utilized to study mucosal (oropharynx and gastrointestinal [GI]) colonization, shedding within feces, and transmission of K. pneumoniae through the fecal-oral route. Using an oral route of inoculation, and fecal shedding as a marker for GI colonization, we showed that K. pneumoniae can asymptomatically colonize the GI tract in immunocompetent mice and modifies the host GI microbiota. Colonization density within the GI tract and levels of shedding in the feces differed among the clinical isolates tested. A hypervirulent K. pneumoniae isolate was able to translocate from the GI tract and cause hepatic infection that mimicked the route of human infection. Expression of the capsule was required for colonization and, in turn, robust shedding. Furthermore, K. pneumoniae carrier mice were able to transmit to uninfected cohabitating mice. Lastly, treatment with antibiotics led to changes in the host microbiota and development of a transient supershedder phenotype, which enhanced transmission efficiency. Thus, this model can be used to determine the contribution of host and bacterial factors toward K. pneumoniae dissemination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Comparative Study
    Streptococcus suis is an encapsulated bacterium and one of the most important swine pathogens and a zoonotic agent for which no effective vaccine exists. Bacterial capsular polysaccharides (CPSs) are poorly immunogenic, but anti-CPS antibodies are essential to the host defense against encapsulated bacteria. In addition to the previously known serotypes 2 and 14, which are nonimmunogenic, we have recently purified and described the CPS structures for serotypes 1, 1/2, 3, 7, 8, and 9. Here, we aimed to elucidate how these new structurally diverse CPSs interact with the immune system to generate anti-CPS antibody responses. CPS-stimulated dendritic cells produced significant levels of C-C motif chemokine ligand 3 (CCL3), partially via Toll-like receptor 2 (TLR2)- and myeloid differentiation factor 88-dependent pathways, and CCL2, via TLR-independent mechanisms. Mice immunized with purified serotype 3 CPS adjuvanted with TiterMax Gold produced an opsonizing IgG response, whereas other CPSs or adjuvants were negative. Mice hyperimmunized with heat-killed S. suis serotypes 3 and 9 both produced anti-CPS type 1 IgGs, whereas serotypes 7 and 8 remained negative. Also, mice infected with sublethal doses of S. suis serotype 3 produced primary anti-CPS IgM and IgG responses, of which only IgM were boosted after a secondary infection. In contrast, mice sublethally infected with S. suis serotype 9 produced weak anti-CPS IgM and IgG responses following a secondary infection. This study provides important information on the divergent evolution of CPS serotypes with highly different structural and/or biochemical properties within S. suis and their interaction with the immune system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    致病性包裹的新生隐球菌真菌在免疫抑制宿主中引起严重疾病。胶囊,一个关键的毒力因子,主要由根据血清型在组成上变化的葡糖醛酸木甘露聚糖多糖(GXM)组成。虽然GXM是一个潜在的疫苗靶标,疫苗的开发被引发非保护性抗体的表位的存在所混淆。尽管有证据表明保护性抗体结合构象表位,GXM的二级结构仍然是一个未解决的问题。在这里,一系列分子动力学模拟表明,GXM甘露聚糖主链在新衣原体血清型A和D中始终延伸且相对不灵活。主链取代不会改变二级结构,而是添加结构基序:βDGlcA和βDXyl侧链在两个亲水边缘中装饰甘露聚糖主链,甘露糖-6-O-乙酰化在它们之间形成疏水脊。这项工作为临床观察提供了机械原理-O-乙酰化对抗体结合的重要性;缺乏保护性抗体与短GXM片段的结合;引发非保护性抗体的表位的存在;以及GXM链的自聚集-表明分子建模可以在缀合疫苗的合理设计中发挥作用。
    The pathogenic encapsulated Cryptococcus neoformans fungus causes serious disease in immunosuppressed hosts. The capsule, a key virulence factor, consists primarily of the glucuronoxylomannan polysaccharide (GXM) that varies in composition according to serotype. While GXM is a potential vaccine target, vaccine development has been confounded by the existence of epitopes that elicit non-protective antibodies. Although there is evidence for protective antibodies binding conformational epitopes, the secondary structure of GXM remains an unsolved problem. Here an array of molecular dynamics simulations reveal that the GXM mannan backbone is consistently extended and relatively inflexible in both C. neoformans serotypes A and D. Backbone substitution does not alter the secondary structure, but rather adds structural motifs: β DGlcA and β DXyl side chains decorate the mannan backbone in two hydrophillic fringes, with mannose-6-O-acetylation forming a hydrophobic ridge between them. This work provides mechanistic rationales for clinical observations-the importance of O-acetylation for antibody binding; the lack of binding of protective antibodies to short GXM fragments; the existence of epitopes that elicit non-protective antibodies; and the self-aggregation of GXM chains-indicating that molecular modelling can play a role in the rational design of conjugate vaccines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Although the branched capsular polysaccharides of Streptococcus agalactiae serotype III (GBSIII PS) and Streptococcus pneumoniae serotype 14 (Pn14 PS) differ only in the addition of a terminal sialic acid on the GBSIII PS side chains, these very similar polysaccharides are immunogenically distinct. Our simulations of GBSIII PS, Pn14 PS and the unbranched backbone polysaccharide provide a conformational rationale for the different antigenic epitopes identified for these PS. We find that side chains stabilize the proximal β dGlc(1→6) β dGlcNAc backbone linkage, restricting rotation and creating a well-defined conformational epitope at the branch point. This agrees with the glycotope structure recognized by an anti-GBSIII PS functional monoclonal antibody. We find the same dominant solution conformation for GBSIII and Pn14 PS: aside from the branch point, the backbone is very flexible with a \"zig-zag\" conformational habit, rather than the helix previously proposed for GBSIII PS. This suggests a common strategy for bacterial evasion of the host immune system: a flexible backbone that is less perceptible to the immune system, combined with conformationally-defined branch points presenting human-mimic epitopes. This work demonstrates how small structural features such as side chains can alter the conformation of a polysaccharide by restricting rotation around backbone linkages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Clinical Trial, Phase I
    A prophylactic Staphylococcus aureus four-antigen vaccine (SA4Ag) is under development for prevention of invasive S. aureus disease. A preliminary S. aureus three-antigen vaccine (SA3Ag) was reformulated to include a novel manganese transporter protein (MntC or rP305A). This study describes the first-in-human dose-finding, safety, and immunogenicity results for SA4Ag.
    In this double-blind, sponsor-unblind, placebo-controlled, phase 1/2 study, 454 healthy adults aged 18-64years were randomised to receive a single dose of one of three formulations of SA4Ag with escalating dose levels of rP305A or placebo. Functional immune responses were measured using opsonophagocytic activity (OPA) killing and fibrinogen-binding inhibition (FBI) assays; antigen-specific immunogenicity was assessed using a four-plex competitive Luminex® immunoassay (cLIA).
    A high proportion of SA4Ag recipients met the pre-defined antibody thresholds for each antigen at Day 29. A substantial and dose-level dependent immune response was observed for rP305A, with up to 18-fold rises in cLIA titres at Day 29. Robust functional responses were demonstrated, with >80-fold and >20-fold rises in OPA assay titres at Day 29 using S. aureus strains expressing capsular polysaccharide serotypes 5 and 8, respectively. Durable antibody responses were observed through month 12, gradually waning from peak levels achieved by days 11-15. SA4Ag was well tolerated, and no vaccine-related serious adverse events were reported.
    Single-dose vaccination of SA4Ag in healthy adults aged 18-64years safely induced rapid and robust functional immune responses that were durable through month 12, supporting further development of this vaccine.
    NCT01364571.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Atomic force microscopy measurements of capsule thickness revealed that that the wild-type Klebsiella pneumoniae AJ218 capsular polysaccharides were rearranged by exposure to colistin. The increase in capsule thickness measured near minimum inhibitory/bactericidal concentration (MIC/MBC) is consistent with the idea that colistin displaces the divalent cations that cross-bridge adjacent lipopolysaccharide (LPS) molecules through the capsule network. Cryo-electron microscopy demonstrated that the measured capsule thickness at near MIC/MBC of 1.2 μM was inflated by the disrupted outer membrane, through which the capsule is excreted and LPS is bound. Since wild-type and capsule-deficient strains of K. pneumoniae AJ218 have equivalent MICs and MBCs, the presence of the capsule appeared to confer no protection against colistin in AJ218. A spontaneously arising colistin mutant showed a tenfold increase in resistance to colistin; genetic analysis identified a single amino acid substitution (Q95P) in the PmrB sensor kinase in this colistin-resistant K. pneumoniae AJ218. Modification of the lipid A component of the LPS could result in a reduction of the net-negative charge of the outer membrane, which could hinder binding of colistin to the outer membrane and displacement of the divalent cations that bridge adjacent LPS molecules throughout the capsular polysaccharide network. Retention of the cross-linking divalent cations may explain why measurements of capsule thickness did not change significantly in the colistin-resistant strain after colistin exposure. These results contrast with those for other K. pneumoniae strains that suggest that the capsule confers colistin resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号