Tryptophan Oxygenase

色氨酸加氧酶
  • 文章类型: Systematic Review
    本系统评价的目的是全面评估不同格斗运动(CS)中的减肥(WL)实践。审查方案已在PROSPERO预注册[CRD42023487196]。搜索了三个数据库(WebofScience,EBSCOhost,和PubMed)至2023年12月8日。符合条件的研究必须符合五个标准:它们必须是(a)用英语写的,(b)发表在同行评审的期刊上,(c)使用调查设计调查CS运动员的WL做法,和(d)使用5分量表报告了运动员使用的WL方法。包括26项研究(来自14个CS的3994名参与者)。本综述发现(1)WL在CS运动员中非常普遍;(2)许多CS运动员每年从青少年开始减肥两到三次;(3)CS运动员通常在比赛前7-14天内体重下降<5%;(4)增加运动和逐渐节食是最常用的WL方法;(5)科学从业者对运动员的影响可以忽略不计。CS运动员的习惯性做法可能相对无害,但在一些特殊情况下,CS运动员也进行极端的WL练习。科学从业者对他们的WL实践影响不大,这可能会形成不合格影响力的恶性循环。
    The aim of this systematic review is to comprehensively assess the weight loss (WL) practices in different combat sports (CS). The review protocol was preregistered with PROSPERO [CRD42023487196]. Three databases were searched (Web of Science, EBSCOhost, and PubMed) until 8 December 2023. Eligible studies had to meet five criteria: they must have been (a) written in English, (b) published in a peer-reviewed journal, (c) used a survey design to investigate the WL practices of CS athletes, and (d) reported the WL methods used by athletes using a five-point scale. Twenty-six studies (3994 participants from 14 CS) were included. This review found that (1) WL is highly prevalent in CS athletes; (2) many CS athletes started losing weight for competition as teenagers two to three times a year; (3) CS athletes usually lose <5% body weight in 7-14 days before competition; (4) increasing exercise and gradually dieting are the most commonly used WL methods; and (5) the influence of scientific practitioners on athletes is negligible. The habitual practices of CS athletes may be relatively harmless, but in some special cases, CS athletes also perform extreme WL practices. Scientific practitioners have little influence on their WL practices, which may form a vicious cycle of non-qualified influence.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Due to its metabolism via the serotonin and kynurenine pathways, tryptophan plays a key role in multiple disease processes including cancer. Imaging tryptophan uptake and metabolism in vivo can be achieved with tryptophan derivative positron emission tomography (PET) radiotracers. While human studies with such tracers have been confined to C-11-labeled compounds, preclinical development of F-18-labeled tryptophan-based radiotracers has surged in recent years. We performed a systematic review of studies reporting on such F-18-labeled tryptophan tracers to summarize and compare their biological characteristics and their potential for tumor imaging, with a particular focus on key enzymes of the kynurenine pathway (indoleamine 2,3-dioxygenase [IDO] and tryptophan 2,3-dioxygenase [TDO]), which play an important role in tumoral immune resistance. From a PubMed search, English language articles including data on the preparation and radiochemical and/or biological characteristics of F-18-labeled tryptophan derivative radiotracers were reviewed. A total of 19 original papers included data on 15 unique radiotracers, the majority of which were synthesized with an adequate radiochemical yield. Automated synthesis was reported for 1-(2-[18F]fluoroethyl)-L-tryptophan, the most extensively evaluated tracer thus far. Biodistribution studies showed high uptake in the pancreas, while the L-type amino acid transporter was the dominant transport mechanism for most of the reviewed tracers. Tracers tested for tumor uptake showed accumulation in tumor cell lines in vitro and in xenografts in vivo, often with favorable tumor-to-background uptake ratios in comparison with clinically used F-18-labeled radiotracers. Five tracers showed promise for imaging IDO activity, including 1-(2-[18F]fluoroethyl)-L-tryptophan and a F-18-labeled analog of alpha-[11C]methyl-L-tryptophan tested clinically in previous studies. Two radiotracers were metabolized by TDO but showed defluorination in vivo. In summary, most F-18-labeled tryptophan derivative PET tracers share common transport mechanisms and biodistribution characteristics. Several reported tracers could be candidates for further testing and validation toward PET imaging applications in a variety of human diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Tryptophan-2, 3-dioxygenase (TDO2) is a tryptophan-degrading enzyme constitutively expressed in the liver and to a lesser extend in the brain. Before its link to cancer immunotherapy was discovered in 2011, the search for TDO2 inhibitors was initially driven by depression therapy. In the recent years, TDO2 has drawn an increasing attention as a promising target in both cancer and neuropsychiatric diseases.
    Patent literature regarding Tryptophan-2, 3-dioxygenase inhibitors is reviewed. Compounds are categorized by chemical structure. Representative examples of each category are presented with their inhibitory activity and, when available, structure-activity relationships. Data from patent literature is deepened with relevant peer-reviewed literature.
    Very few selective and potent inhibitors were to this day reported and there are currently no TDO2 inhibitors in clinical trials. Despite the challenges in their discovery, the search for TDO2 inhibitors is a very active area of research, as such molecules may prove to be of great interest in not only cancer immunotherapy drug arsenal, but also in neurodegenerative diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    BACKGROUND: The inhibition of indoleamine 2,3-dioxygenase (IDO) has emerged as a key area in cancer immunotherapy in the past decade. Despite the large variety of potential inhibitors screened so far, the number of active scaffolds remains limited.
    METHODS: All relevant patent literature published between 2008 and 2012 is reviewed. Representative examples are given for each patent and/or class of compounds along with data (if available) on their inhibitory activity. The presentation is deepened by additional data published in peer-reviewed literature.
    CONCLUSIONS: Key events that stimulated the search of IDO inhibitors are presented. To date, however, the number of available scaffolds remains limited with only one confirmed inhibitor (from Incyte Corp.) in the clinic. Major challenges in the search for IDO inhibitors are discussed as well as the relevance of selectivity of IDO inhibition versus inhibition of tryptophan 2,3-dioxygenase.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    L-Tryptophan, 2,3-dioxygenase (EC 1.13.11.11) has been purified to homogenity from L-tryptophan induced Pseudomonas acidovorans (ATCC 11299b) and from L-tryptophan and cortisone induced rat liver. The enzyme from both sources is composed of four subunits and contains two g-atoms copper and two moles heme per mole tetramer. The proteins from the two sources are not identical. Three oxidation states of tryptophan oxygenase have been isolated: (1) fully oxidized, [Cu(II)]2[Ferriheme]2; (2) half reduced, [Cu(i)]2[ferriheme]2; and (3) fully reduced, [Cu(I)]2[ferroheme]2. Catalytic activity is dependent solely on the presence of Cu(I) in the enzyme, the heme may be either ferro or ferri. The presence of Cu(II) in the enzyme results in a requirement for an exogenous reductant, such as ascorbate, in order to elicit enzymic activity. Ligands, such as cyanide and carbon monoxide, can inhibit catalysis by binding to either or to both the copper and heme moieties. Metal complexing agents, such as bathocuproinesulfonate and bathophenanthrolinesulfonate, can inhibit catalysis by binding to Cu(I) resent only in catalytically active enzyme molecules. During catalysis by the fully reduced form of the enzyme, molecular oxygen binds to the heme moieties, while during catalysis by the half reduced form of the enzyme it does not, presumably binding instead to the Cu(I) moieties. Enzymes that catalyze similar reactions have been purified from other sources. Indoleamine 2,3-dioxygenase appears to be a heme protein, but its copper content is unknown. Pyrrolooxygenases appear to be completely different enzymes, although they have not yet been purified to homegeneity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号