Theanine

茶氨酸
  • 文章类型: Systematic Review
    睡眠-觉醒周期是一个复杂的多因素过程,涉及多种神经递质,包括乙酰胆碱,去甲肾上腺素,血清素,组胺,多巴胺,食欲素和GABA,这可能是,反过来,由参与其代谢途径的不同营养素调节。尽管儿童良好的睡眠质量已被证明是最佳认知的关键因素,身体和心理发展,越来越多的儿科人群患有睡眠障碍。在儿童中,行为干预与补充剂一起被推荐作为一线治疗。进行了系统的审查,根据PRISMA指南,目的是评估儿童和青少年睡眠调节神经递质途径中涉及的主要营养素。我们的重点是利用非处方药(OTC)产品,特别是铁,羟色氨酸,茶氨酸和抗组胺药在不同儿科睡眠障碍治疗中的应用,旨在为临床医生提供实用指导。
    The sleep-wake cycle is a complex multifactorial process involving several neurotransmitters, including acetylcholine, norepinephrine, serotonin, histamine, dopamine, orexin and GABA, that can be, in turn, regulated by different nutrients involved in their metabolic pathways. Although good sleep quality in children has been proven to be a key factor for optimal cognitive, physical and psychological development, a significant and ever-increasing percentage of the pediatric population suffers from sleep disorders. In children, behavioral interventions along with supplements are recommended as the first line treatment. This systematic review was conducted, according to the PRISMA guidelines, with the purpose of assessing the principal nutrients involved in the pathways of sleep-regulating neurotransmitters in children and adolescents. Our focus was the utilization of over the counter (OTC) products, specifically iron, hydroxytryptophan, theanine and antihistamines in the management of different pediatric sleep disorders with the intention of providing a practical guide for the clinician.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Review
    在适应环境的过程中,茶树(茶树)赋予茶独特的风味和保健功能,应该归因于次级代谢产物,包括儿茶素,L-茶氨酸,咖啡因和萜烯挥发物。由于这些风味代谢产物的含量主要由茶树的生长决定,了解它们的变化和调节机制非常重要。在目前的工作中,我们首先总结一下分布,不同品种主要风味代谢产物的变化特征,茶树的器官和环境压力下。随后,基于现有证据,我们讨论了这些代谢物生物合成的调节机制。最后,我们对未来与风味相关的代谢产物的研究提出了评论和观点。这篇综述将有助于加快茶树特有次生代谢产物的研究和育种计划。
    In the process of adapting to the environment, tea plants (Camellia sinensis) endow tea with unique flavor and health functions, which should be attributed to secondary metabolites, including catechins, L-theanine, caffeine and terpene volatiles. Since the content of these flavor-contributing metabolites are mainly determined by the growth of tea plant, it is very important to understand their alteration and regulation mechanisms. In the present work, we first summarize the distribution, change characteristics of the main flavor-contributing metabolites in different cultivars, organs and under environmental stresses of tea plant. Subsequently, we discuss the regulating mechanisms involved in the biosynthesis of these metabolites based on the existing evidence. Finally, we propose the remarks and perspectives on the future study relating flavor-contributing metabolites. This review would contribute to the acceleration of research on the characteristic secondary metabolites and the breeding programs in tea plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    A growing literature indicates several health benefits of theanine, a major nonprotein derivative amino acid special to tea, and a nonedible mushroom. This study aimed to systematically review the scientific evidence regarding the anticarcinogen and anticancer effects of natural theanine. A systematic search for the relevant articles published until January 2021 on MEDLINE, Scopus, and Web of Knowledge was conducted. Out of 377 initial records, 14 in vitro, ex vivo, and in vivo studies met our inclusion criteria. Most of the included in vitro and ex vivo studies reported beneficial effects of theanine on the proliferation, apoptosis, metastasis, migration, and invasion in various cancer cell lines. The in vivo studies also supported the potential impacts of theanine on cancer incidence or progression. Theanine exerted its anticancer function by inhibiting EGFR, VEGFR, Met, and Akt/mTOR, JAK2/STAT3, and ERK/NFκB pathways, as well as activating the intrinsic apoptosis pathway and caspase-independent programmed cell death. In conclusion, the results indicated moderate apoptotic, antimetastatic, antimigration, and anti-invasion effects, along with the mild antiproliferative influence of theanine on cancer. Further studies are necessary to ascertain the effectiveness of theanine on the prevention and suppression of cancer and shed light upon the attributable mechanisms in the in vivo condition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Rising atmospheric carbon dioxide, an important driver of climate change, has multifarious effects on crop yields and quality. Despite tremendous progress in understanding the mechanisms of plant responses to elevated CO2, only a few studies have examined the CO2-enrichment effects on tea plants. Tea [Camellia sinensis (L.)], a non-deciduous woody perennial plant, operates massive physiologic, metabolic and transcriptional reprogramming to adapt to increasing CO2. Tea leaves elevate photosynthesis when grown at CO2-enriched environment which is attributed to increased maximum carboxylation rate of RuBisCO and maximum rates of RuBP regeneration. Elevated CO2-induced photosynthesis enhances the energy demand which triggers respiration. Stimulation of photosynthesis and respiration by elevated CO2 promotes biomass production. Moreover, elevated CO2 increases total carbon content, but it decreases total nitrogen content, leading to an increased ratio of carbon to nitrogen in tea leaves. Elevated CO2 alters the tea quality by differentially influencing the concentrations and biosynthetic gene expression of tea polyphenols, free amino acids, catechins, theanine, and caffeine. Signaling molecules salicylic acid and nitric oxide function in a hierarchy to mediate the elevated CO2-induced flavonoid biosynthesis in tea leaves. Despite enhanced synthesis of defense compounds, tea plant defense to some insects and pathogens is compromised under elevated CO2. Here we review the physiological and metabolic responses of tea plants to elevated CO2. In addition, the potential impacts of elevated CO2 on tea yield and defense responses are discussed. We also show research gaps and critical research areas relating to elevated CO2 and tea quality for future study.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    A systematic review and meta-analysis was conducted on 11 randomized placebo-controlled human studies of acute effects of tea constituents L-theanine and epigallocatechin gallate, administered alone or in combination with caffeine, on cognitive function and mood. The outcome measures of mood were alertness, calmness, and contentedness, derived from the Bond-Lader scales, and state anxiety, from the State-Trait Anxiety Inventory. Cognitive measures assessed were attentional switch, intersensory attention, and rapid visual information processing. Standardized mean differences between placebo and treatment groups are presented for each study and outcome measure. Meta-analysis using a random-effects model was conducted when data were available for three or more studies. Evidence of moderate effect sizes in favor of combined caffeine and L-theanine in the first 2 hours postdose were found for outcome measures Bond-Lader alertness, attentional switching accuracy, and, to a lesser extent, some unisensory and multisensory attentional outcomes. Moderator analysis of caffeine and L-theanine doses revealed trends toward greater change in effect size for caffeine dose than for L-theanine dose, particularly during the first hour postdose.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号