Tetranychidae

四衣藻科
  • 文章类型: Journal Article
    群居动物应调整其繁殖策略以适应社会环境。理论预测,集群生活的好处将超过竞争的成本。然而,在繁殖期间,动物如何优化其生殖适应性以应对不断变化的社会环境,这在很大程度上是未知的。我们用了四虫LudeniZacher,单倍体蜘蛛螨,调查产卵雌性如何响应集群大小的变化而改变其生活史特征(即,聚集和分散)具有一致的人口密度(1‰/cm2)。我们证明了(1)在雌性从大型集群(16‰)转移到小型集群(1‰,5和10他们产下更少、更大的卵,女性偏见的性别比例更高;(2)在女性从小集群转移到大集群后,他们产下更少更小的蛋,女性偏见的性别比例也较高,(3)增加卵子大小显著增加后代性别比(%女儿),但并没有增加未成熟的生存率。结果表明,(1)雌性在小种群中受精更多的卵,但在较大的种群中降低受精阈值并受精较小的卵,(2)在卵子数量和大小方面的生殖调整可能更有助于最大程度地减少儿子之间的配偶竞争,但不会增加下一代的居民数量。当前的研究提供了证据,表明蜘蛛螨可以根据动态的社会环境操纵其生殖输出并调节后代的性别比例。
    Animals living in clusters should adjust their reproductive strategies to adapt to the social environment. Theories predict that the benefits of cluster living would outweigh the costs of competition. Yet, it is largely unknown how animals optimize their reproductive fitness in response to the changing social environment during their breeding period. We used Tetranychus ludeni Zacher, a haplodiploid spider mite, to investigate how the ovipositing females modified their life-history traits in response to the change of cluster size (i.e., aggregation and dispersal) with a consistent population density (1 ♀/cm2). We demonstrate that (1) after females were shifted from a large cluster (16 ♀♀) to small ones (1 ♀, 5 and 10 ♀♀), they laid fewer and larger eggs with a higher female-biased sex ratio; (2) after females were shifted from small clusters to a large one, they laid fewer and smaller eggs, also with a higher female-biased sex ratio, and (3) increasing egg size significantly increased offspring sex ratio (% daughters), but did not increase immature survival. The results suggest that (1) females fertilize more larger eggs laid in a small population but lower the fertilization threshold and fertilize smaller eggs in a larger population, and (2) the reproductive adjustments in terms of egg number and size may contribute more to minimize the mate competition among sons but not to increase the number of inhabitants in the next generation. The current study provides evidence that spider mites can manipulate their reproductive output and adjust offspring sex ratio in response to dynamic social environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Comparative Study
    BACKGROUND: Zoophytophagous predators can trigger plant defenses affecting prey populations beyond predation. Euseius stipulatus is a presumed zoophytophagous phytoseiid common in citrus. The response of citrus to one of its potential prey, Tetranychus urticae, is genotype dependent, with Citrus reshni and C. aurantium exhibiting extreme susceptibility and resistance, respectively. Volatile blends produced upon infestation affected the behavior of these two mites. We wondered whether E. stipulatus could trigger similar responses.
    RESULTS: Euseius stipulatus triggered genotype-dependent defense responses in citrus. Whereas C. aurantium upregulated the Jasmonic Acid, Salicylic Acid and flavonoids defensive pathways, C. reshni upregulated JA only. Likewise, different volatile blends were induced. These blends were exploited by E. stipulatus to select less-defended plants (i.e., those in which higher pest densities are expected) and, interestingly, did not prevent T. urticae from choosing E. stipulatus-infested plants. To the best of our knowledge, this is the first time that this type of response has been described for a zoophytophagous phytoseiid.
    CONCLUSIONS: The observed responses could affect herbivore populations through plant-mediated effects. Although further research is needed to fully characterize them and include other arthropods in the system, these results open opportunities for more sustainable and effective pest control methods (i.e., combining semiochemicals and biological control). © 2018 Society of Chemical Industry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Plant-herbivore interactions evolved over long periods of time, resulting in an elaborate arms race between interacting species. While specialist herbivores evolved specific strategies to cope with the defenses of a limited number of hosts, our understanding of how generalist herbivores deal with the defenses of a plethora of diverse host plants is largely unknown. Understanding the interaction between a plant host and a generalist herbivore requires an understanding of the plant\'s mechanisms aimed at defending itself and the herbivore\'s mechanisms intended to counteract diverse defenses. In this review, we use the two-spotted spider mite (TSSM), Tetranychus urticae (Koch) as an example of a generalist herbivore, as this chelicerate pest has a staggering number of plant hosts. We first establish that the ability of TSSM to adapt to marginal hosts underlies its polyphagy and agricultural pest status. We then highlight our understanding of direct plant defenses against spider mite herbivory and review recent advances in uncovering mechanisms of spider mite adaptations to them. Finally, we discuss the adaptation process itself, as it allows TSSM to overcome initially effective plant defenses. A high-quality genome sequence and developing genetic tools, coupled with an ease of mite experimental selection to new hosts, make TSSM an outstanding system to study the evolution of host range, mechanisms of pest xenobiotic resistance and plant-herbivore interactions. In addition, knowledge of plant defense mechanisms that affect mite fitness are of practical importance, as it can lead to development of new control strategies against this important agricultural pest. In parallel, understanding mechanisms of mite counter adaptations to these defenses is required to maintain the efficacy of these control strategies in agricultural practices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Tetranychus urticae Koch is a cosmopolitan mite considered as the most polyphagous species among spider mites. This mite is a key pest of clementine mandarins in Eastern Spain, where Spanish clementine production concentrates. Crop management practices can affect the population dynamics of this mite and, consequently, its impact on the orchard. Microsatellite markers were used to study mite population genetics from two commercial orchards which had been managed differently following Integrated Pest Management (IPM) or Organic Pest Management (OPM) schemes during four consecutive years. A multiplex system including 20 microsatellite loci was designed specifically and allowed an efficient and inexpensive genotyping of individual mites. We found that the IPM population had a stronger fluctuation of population structure and higher genetic diversity compared to OPM population. Thus, our study concludes that crop management has an impact on the population genetics of T. urticae which may be related to the alternation of some acaricides under IPM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Comparative Study
    Choosing a suitable habitat is a main step in the settlement process, particularly for species having weak movement abilities. Reliable cues are thus needed for habitat selection. In silk-spinning arthropods, silk can be used as a social cue to select an appropriate location. Silk can also provide information on the presence of related or non-related individuals. In this article, we compare the settlement behaviour of two strains of the two-spotted spider mite, Tetranychus urticae, in response to the presence of silk woven by an individual of its own or another strain. We then examined how individuals behaved when confronted with both types of silk (own/another strain) simultaneously. Both strains were sensitive to related silk. Settlement decision for both strains did not differ according to the origin of the silk. Mites used the silk as a communication cue for habitat selection and strain discrimination. Our results provide experimental evidence for the use of multiple social cues in the settlement decision by weaving mites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Climate change is one of the most important factors affecting the phenology, distribution, composition and diversity of organisms. In agricultural systems many pests and natural enemies are arthropods. As poikilotherm organisms, their body temperature is highly dependent on environmental conditions. Because higher trophic levels typically have lower tolerance to high temperatures than lower trophic levels, trends towards increasing local or regional temperatures may affect the strength of predator/prey interactions and disrupt pest control. Furthermore, increasing temperatures may create climate corridors that could facilitate the invasion and establishment of invasive species originating from warmer areas. In this study we examined the effect of environmental conditions on the dynamics of an agro-ecosystem community located in southern Spain, using field data on predator/prey dynamics and climate gathered during four consecutive years. The study system was composed of an ever-green tree species (avocado), an exotic tetranychid mite, and two native species of phytoseiid mites found in association with this new pest. We also present a climatological analysis of the temperature trend in the area of study during the last 28 years, as evidence of temperature warming occurring in the area. We found that the range of temperatures with positive per capita growth rates was much wider in prey than in predators, and that relative humidity contributed to explain the growth rate variation in predators, but not in prey. Predator and prey differences in thermal performance curves could explain why natural enemies did not respond numerically to the pest when environmental conditions were harsh.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    A large body of evidence shows that plants release volatile chemicals upon attack by herbivores. These volatiles influence the performance of natural enemies. Nearly all the evidence on the effect of plant volatiles on natural enemies of herbivores concerns predators, parasitoids, and entomophagous nematodes. However, other entomopathogens, such as fungi, have not been studied yet for the way they exploit the chemical information that the plant conveys on the presence of herbivores. We tested the hypothesis that volatiles emanating from cassava plants infested by green mites (Mononychellus tanajoa) trigger sporulation in three isolates of the acaropathogenic fungus Neozygites tanajoae. Tests were conducted under climatic conditions optimal to fungal conidiation, such that the influence of the plant volatiles could only alter the quantity of conidia produced. For two isolates (Altal.brz and Colal.brz), it was found that, compared with clean air, the presence of volatiles from clean, excised leaf discs suppressed conidia production. This suppressive effect disappeared in the presence of herbivore-damaged leaves for the isolate Colal.brz. For the third isolate, no significant effects were observed. Another experiment differing mainly in the amount of volatiles showed that two isolates produced more conidia when exposed to herbivore-damaged leaves compared with clean air. Taken together, the results show that volatiles from clean plants suppress conidiation, whereas herbivore-induced plant volatiles promote conidiation of N. tanajoae. These opposing effects suggest that the entomopathogenic fungus tunes the release of spores to herbivore-induced plant signals indicating the presence of hosts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号