Talin

塔林
  • 文章类型: Journal Article
    细胞通过细胞-ECM粘附与细胞外基质(ECM)相互作用。这些物理相互作用在细胞内被转换成影响细胞行为的生化信号。尽管细胞-ECM相互作用已被广泛研究,尚不完全了解不成熟(新生)粘连如何发展为成熟(局灶性)粘连以及机械力如何影响该过程。鉴于尺寸小,新生粘连的动态性质和短寿命,研究他们使用传统的微观和实验技术是具有挑战性的。计算模型为模拟和探索各种“如果”场景提供了宝贵的资源,并确定了关键分子成分和机制以进行进一步研究。这里,我们提出了一个基于常微分方程的简化机械化学模型,该模型具有参与粘附的三种主要蛋白质:整合素,talin和vinculin.此外,我们引入了一个假设的信号分子,影响粘附(dis)组装率。我们发现,组装和拆卸率需要动态变化,以限制新生粘连的成熟。该模型预测肌动蛋白逆行速度和成熟分数随底物刚度的双相变化,成熟分数在18-35%之间,~1pN/nm的最佳刚度,机械敏感范围为1-100pN/nm,所有这些都对应于关键的实验结果。敏感性分析显示结果对参数值微小变化的鲁棒性,允许模型调整以反映特定的细胞类型和信号级联。该模型提出,信号相关的分解率变化在成熟分数调节中起着未被重视的作用,应该进一步调查。我们还提供了在增加/减少的葡萄籽素浓度下牵引力产生的变化的预测,补充了以前在不同细胞类型中的维甲酸过表达/敲除实验。总之,这项工作提出了一个模型框架来稳健地模拟粘附成熟和维护的机械化学过程,从而增强我们对细胞-ECM相互作用的基本知识。
    Cells interact with the extracellular matrix (ECM) via cell-ECM adhesions. These physical interactions are transduced into biochemical signals inside the cell which influence cell behaviour. Although cell-ECM interactions have been studied extensively, it is not completely understood how immature (nascent) adhesions develop into mature (focal) adhesions and how mechanical forces influence this process. Given the small size, dynamic nature and short lifetimes of nascent adhesions, studying them using conventional microscopic and experimental techniques is challenging. Computational modelling provides a valuable resource for simulating and exploring various \"what if?\" scenarios in silico and identifying key molecular components and mechanisms for further investigation. Here, we present a simplified mechano-chemical model based on ordinary differential equations with three major proteins involved in adhesions: integrins, talin and vinculin. Additionally, we incorporate a hypothetical signal molecule that influences adhesion (dis)assembly rates. We find that assembly and disassembly rates need to vary dynamically to limit maturation of nascent adhesions. The model predicts biphasic variation of actin retrograde velocity and maturation fraction with substrate stiffness, with maturation fractions between 18-35%, optimal stiffness of ∼1 pN/nm, and a mechanosensitive range of 1-100 pN/nm, all corresponding to key experimental findings. Sensitivity analyses show robustness of outcomes to small changes in parameter values, allowing model tuning to reflect specific cell types and signaling cascades. The model proposes that signal-dependent disassembly rate variations play an underappreciated role in maturation fraction regulation, which should be investigated further. We also provide predictions on the changes in traction force generation under increased/decreased vinculin concentrations, complementing previous vinculin overexpression/knockout experiments in different cell types. In summary, this work proposes a model framework to robustly simulate the mechanochemical processes underlying adhesion maturation and maintenance, thereby enhancing our fundamental knowledge of cell-ECM interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Mechanical signals regulate functions of mechanosensitive proteins by inducing structural changes that are determinant for force-dependent interactions. Talin is a focal adhesion protein that is known to extend under mechanical load, and it has been shown to unfold via intermediate states. Here, we compared different nonequilibrium molecular dynamics (MD) simulations to study unfolding of the talin rod. We combined boxed MD (BXD), steered MD, and umbrella sampling (US) techniques and provide free energy profiles for unfolding of talin rod subdomains. We conducted BXD, steered MD, and US simulations at different detail levels and demonstrate how these different techniques can be used to study protein unfolding under tension. Unfolding free energy profiles determined by BXD suggest that the intermediate states in talin rod subdomains are stabilized by force during unfolding, and US confirmed these results.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Focal adhesions (FA) play an important role in the tissue remodeling and in the maintenance of tissue integrity and homeostasis. Talin and vinculin proteins are among the major constituents of FAs contributing to cellular well-being and intercellular communication.
    Microarray analysis (MA) and qRT-PCR low-density array were implemented to analyze talin-1, talin-2, meta-vinculin and vinculin gene expression in circulating blood and arterial plaque.
    All analyzed genes were significantly and consistently downregulated in plaques (carotid, abdominal aortic and femoral regions) compared to left internal thoracic artery (LITA) control. The use of LITA samples as controls for arterial plaque samples was validated using immunohistochemistry by comparing LITA samples with healthy arterial samples from a cadaver. Even though the differences in expression levels between stable and unstable plaques were not statistically significant, we observed further negative tendency in the expression in unstable atherosclerotic plaques. The confocal tissue imaging revealed gradient of talin-1 expression in plaque with reduction close to the vessel lumen. Similar gradient was observed for talin-2 expression in LITA controls but was not detected in plaques. This suggests that impaired tissue mechanostability affects the tissue remodeling and healing capabilities leading to development of unstable plaques.
    The central role of talin and vinculin in cell adhesions suggests that the disintegration of the tissue in atherosclerosis could be partially driven by downregulation of these genes, leading to loosening of cell-ECM interactions and remodeling of the tissue.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The mechanical properties of biomolecules play pivotal roles in regulating cellular functions. For instance, extracellular mechanical stimuli are converted to intracellular biochemical activities by membrane receptors and their downstream adaptor proteins during mechanotransduction. In general, proteins favor the conformation with the lowest free energy. External forces modify the energy landscape of proteins and drive them to unfolded or deformed conformations that are of functional relevance. Therefore, the study of the physical properties of proteins under external forces is of fundamental importance to understand their functions in cellular mechanics. Here, a coarse-grained computational model was developed to simulate the unfolding or deformation of proteins under mechanical perturbation. By applying this method to unfolding of previously studied proteins or protein fragments with external forces, we demonstrated that our results are quantitatively comparable to previous experimental or all-atom computational studies. The model was further extended to the problem of elastic deformation of large protein complexes formed between membrane receptors and their ligands. Our studies of binding between T cell receptor (TCR) and major histocompatibility complex (MHC) illustrated that stretching of MHC ligand initially lowers its binding energy with TCR, supporting the recent experimental report that TCR/MHC complex is formed through the catch-bond mechanism. Finally, the method was, for the first time, applied to pulling of an eight-cadherin cluster that was formed by their trans and cis binding interfaces. Our simulation results show that mechanical properties of adherens junctions are functionally important to cell adhesion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • DOI:
    文章类型: English Abstract
    Tumor angiogenesis induced by vascular endothelial cells (VECs) migration is a necessary condition for tumor growth and metastasis. The purpose of this study is to investigate the effect of focal adhesion kinase (FAK) inhibitor (50nmol/mL) on the adhesion and migration of endothelial cells(ECs) and the expression of focal adhesion proteins vinculin, talin and paxillin. Scratch wound migration assay was performed to examine the effect of FAK inhibitor with 50nmol/mL on ECs migration at 0, 5, 10, 30, 60 and 120min, respectively. And immunofluorescence analysis was performed to detect the expression of F-actin in ECs treated with FAK inhibitor within 2h. Western blot was carried out to determine the effect of FAK inhibitor on expression of vinculin, talin and paxillin proteins. The results showed that the migration distance and the expression of F-actin in ECs treated with FAK inhibitor decreased significantly compared with that of the controls, and the level of vinculin showed no significant difference with increasing of treated time of FAK inhibitor. However, the talin and paxillin showed an identical decreasing tendency in 5-10min, but slowly going up in 30min and then after subsequently decreasing. The results of this study proved that blocking phosphorylation of FAK could inhibit VECs adhesion and migration by downregulating focal adhesion proteins so that it may inhibit tumor angiogenesis. This may provide a new approach for tumor therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • DOI:
    文章类型: Journal Article
    OBJECTIVE: Ankylosing spondylitis (AS) is difficult to diagnose in its early stage due to the lack of simple and specific diagnostic indicators. This study was performed to screen candidate AS-associated proteins from peripheral blood mononuclear cells (PBMCs) of AS patients by combining a two-dimensional electrophoresis (2-DE) technique with mass spectrometry (MS) analysis.
    METHODS: Twelve subjects consisting of 6 AS patients and 6 healthy volunteers (HVs) were enrolled in the 2-DE experiments. The protein expression patterns of PBMCs from different groups were analysed by PDQuest software, and the protein spots over/under-expressed by more than 2-fold between the two groups were identified by MS analysis. Western blot analyses were used to verify the differentially expressed proteins in 32 AS patients and 32 HVs.
    RESULTS: Six proteins including pyruvate kinase (PK), profilin 1 (PFN1), talin 1 (TLN1), Chain A of cyclophilin A (CyPA), unknown protein (gi|16306948) and integrin-linked kinase (ILK) were identified from 10 over-expressed protein spots found by 2-DE in the AS group. Western blot experiments confirmed a higher expression of both TLN1 and ILK in AS group compared to the HV group (p<0.05).
    CONCLUSIONS: TLN1 and ILK expressed higher in PBMCs of AS patients compared to healthy controls, which were involved in the integrin signalling pathway. The two proteins are likely novel disease-associated proteins and potential disease markers of AS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    整合素是对细胞迁移和粘附至关重要的细胞表面受体。它们通过talin头结构域与膜表面和整联蛋白β细胞质尾的相互作用而被激活。这里,我们使用粗粒分子动力学模拟和核磁共振波谱来阐明距骨头部(F2-F3)域的膜结合表面。特别是,我们显示四个碱性残基(K258E,K274E,R276E,和F2结合表面中的K280E)降低了F2-F3对膜的亲和力,并改变了其相对于双层的取向。我们的结果强调了阴离子脂质在滑石/膜相互作用中的关键作用。与α/β跨膜二聚体复合的F2-F3的模拟揭示了其相对于膜的取向的信息。我们的研究表明,在F2突变体中,talin相对于膜的方向受到干扰,进而会干扰talin/整联蛋白的相互作用。
    Integrins are cell surface receptors crucial for cell migration and adhesion. They are activated by interactions of the talin head domain with the membrane surface and the integrin β cytoplasmic tail. Here, we use coarse-grained molecular dynamic simulations and nuclear magnetic resonance spectroscopy to elucidate the membrane-binding surfaces of the talin head (F2-F3) domain. In particular, we show that mutations in the four basic residues (K258E, K274E, R276E, and K280E) in the F2 binding surface reduce the affinity of the F2-F3 for the membrane and modify its orientation relative to the bilayer. Our results highlight the key role of anionic lipids in talin/membrane interactions. Simulation of the F2-F3 in complex with the α/β transmembrane dimer reveals information for its orientation relative to the membrane. Our studies suggest that the perturbed orientation of talin relative to the membrane in the F2 mutant would be expected to in turn perturb talin/integrin interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Cells can sense mechanical force in regulating focal adhesion assembly. One vivid example is the force-induced recruitment of vinculin to reinforce initial contacts between a cell and the extracellular matrix. Crystal structures of the unbound proteins and bound complex between the vinculin head subdomain (Vh1) and the talin vinculin binding site 1 (VBS1) indicate that vinculin undergoes a conformational change upon binding to talin. However, the molecular basis for this event and the precise nature of the binding pathway remain elusive. In this article, molecular dynamics is used to investigate the binding mechanism of Vh1 and VBS1 under minimal constraints to facilitate binding. One simulation demonstrates binding of the two molecules in the complete absence of external force. VBS1 makes early hydrophobic contact with Vh1 by positioning the critical hydrophobic residues (L608, L615, and L622) in the groove formed by helices 1 and 2 of Vh1. The solvent-exposed hydrophobic residues (V619 and L623) then gradually penetrate the hydrophobic core of Vh1, thus further separating helix 1 from helix 2. These critical residues are highly conserved as large hydrophobic side groups in other vinculin binding sites; studies also have demonstrated that these residues are essential in Vh1-VBS1 binding. Similar binding mechanisms are also demonstrated in separate molecular dynamics simulations of Vh1 binding to other vinculin binding sites both in talin and alpha-actinin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Mechanical strain is one of the important epigenetic factors that cause deformation and differentiation of skeletal muscles. This research was designed to investigate how myoblast deformation occurs after cyclic strain loading. Myoblasts were passaged three times and harvested; various cyclic strains (2.5kPa, 5kPa and 10kPa) were then loaded using a pulsatile mechanical system. The adaptive response of the myoblasts was observed at different time points (0.5h, 1h, 6h and 12h) post-loading. At the early stage of cyclic strain loading (<1h), almost no visible morphological changes were observed in the myoblasts. The actin cytoskeleton showed a disordered arrangement and a weak fluorescence expression; there was little expression of talin. At 6h and 12h post-loading, the myoblasts changed their orientation to parallel (in the 2.5kPa and 5kPa groups) or perpendicular (in the 10kPa group) to the direction of strain. Fluorescence expression of both the actin cytoskeleton and talin was significantly increased. The results suggest that cyclic strain has at least two ways to regulate adaptation of myoblasts: (1) by directly affecting actin cytoskeleton at an early stage post-loading to cause depolymerization; and (2) by later chemical signals transmitted from the extracellular side to intracellular side to initiate repolymerization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • DOI:
    文章类型: Journal Article
    The sarcoglycan subcomplex (SGC) is a well-known system of interaction between extracellular matrix and sarcolemma-associated cytoskeleton in skeletal and cardiac muscle. The SGC is included in the DGC made up of sarcoplasmic subcomplex and a dystroglycan subcomplex. Recent developments in molecular genetics have demonstrated that the mutation of each single sarcoglycan gene, causes a series of recessive autosomal muscular dystrophies, dystrophin-positive, called sarcoglycanopathies or limb girdle muscular dystrophies. Our recent studies have demonstrated that costameres are a proteic machinery made up of DGC and vinculin-talin-integrin system, also revealing the colocalization of sarcoglycans and integrins in adult human skeletal muscle. These results may support the hypothesis of the existence of a bidirectional signalling between sarcoglycans and integrins in cultured L6 myocytes. The hypothesis of bidirectional signalling between sarcoglycans and integrins could be supported by the identification of a skeletal and cardiac muscle filamin2 as a gamma-sarcoglycan, delta-sarcoglycan and, hypothetically, beta1 integrin interacting protein. Our results, acquired with an immunofluorescence study on adult human skeletal muscle affected by LGMD type 2D and 2C, showed that in LGMD2D: a) alpha-sarcoglycan staining is severely reduced; b) the beta-gamma-delta-sarcoglycan subunit and all tested integrins staining are clearly detectable; c) filamin2 is normal and shows a costameric distribution. In LGMD2C: a) alpha-sarcoglycan staining is preserved; b) the beta-gamma-delta-sarcoglycan subunit staining is severely reduced; c) the alpha7B-integrin is slightly reduced and beta1D-integrin is severely reduced; d) filamin2 is severely reduced. Other tested proteins of the two systems show a normal staining pattern in both sarcoglycanopathies. Our study seems to confirm, for the first time on adult human skeletal muscle of subjects affected by LGMDs, the hypo-theses of: a) the existence, in mouse myotubes in culture, of two distinct subunits in sarcoglycans subcomplex; b) the presence of a bidirectional signalling between sarcoglycans and integrins, previously demonstrated on rat cultured L6 myocytes; c) the interaction of FLN2 with both sarcoglycans and integrins. These results may stimulate the search of yet unidentified common interactors of both fiber-extracellular matrix interaction systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号