Substrate Specificity

底物特异性
  • 文章类型: Journal Article
    一个小,核苷酸结合域,ATP锥,在大多数核糖核苷酸还原酶(RNR)催化亚基的N末端发现。通过结合三磷酸腺苷(ATP)或三磷酸脱氧腺苷(dATP),其调节所有类型的RNR的酶活性。对需氧RNR的功能和结构工作揭示了多种方式,其中dATP通过诱导寡聚化并阻止从一个亚基到另一个亚基的活性位点的生产性自由基转移来抑制活性。无氧RNRs,另一方面,在活性位点旁边储存稳定的甘氨酰自由基,其dATP依赖性抑制的基础是完全未知的。我们展示了生化,生物物理,以及有关ATP和dATP与Prevotellacopri厌氧RNR结合作用的结构信息。当两个ATP分子与ATP-锥结合时,酶以二聚体-四聚体平衡存在,而当两个dATP分子结合时,酶则偏向二聚体。在ATP存在的情况下,P.copriNrdD是有活性的并且在二聚体的一个单体中具有完全有序的甘氨酰自由基结构域(GRD)。dATP与ATP-cone的结合导致GRD的活性丧失和动力学增加。使得它不能在低温EM结构中被检测到。甘氨酰自由基甚至以dATP结合的形式形成,但底物不结合。这些结构暗示了活性调节中相互作用的复杂网络,该网络涉及GRD距dATP分子30多埃,变构底物特异性位点和活性位点上保守但以前看不见的瓣。一起来看,结果表明,dATP在厌氧RNR中的抑制作用通过增加皮瓣和GRD的柔韧性而起作用,从而防止底物结合和自由基动员。
    A small, nucleotide-binding domain, the ATP-cone, is found at the N-terminus of most ribonucleotide reductase (RNR) catalytic subunits. By binding adenosine triphosphate (ATP) or deoxyadenosine triphosphate (dATP) it regulates the enzyme activity of all classes of RNR. Functional and structural work on aerobic RNRs has revealed a plethora of ways in which dATP inhibits activity by inducing oligomerisation and preventing a productive radical transfer from one subunit to the active site in the other. Anaerobic RNRs, on the other hand, store a stable glycyl radical next to the active site and the basis for their dATP-dependent inhibition is completely unknown. We present biochemical, biophysical, and structural information on the effects of ATP and dATP binding to the anaerobic RNR from Prevotella copri. The enzyme exists in a dimer-tetramer equilibrium biased towards dimers when two ATP molecules are bound to the ATP-cone and tetramers when two dATP molecules are bound. In the presence of ATP, P. copri NrdD is active and has a fully ordered glycyl radical domain (GRD) in one monomer of the dimer. Binding of dATP to the ATP-cone results in loss of activity and increased dynamics of the GRD, such that it cannot be detected in the cryo-EM structures. The glycyl radical is formed even in the dATP-bound form, but the substrate does not bind. The structures implicate a complex network of interactions in activity regulation that involve the GRD more than 30 Å away from the dATP molecules, the allosteric substrate specificity site and a conserved but previously unseen flap over the active site. Taken together, the results suggest that dATP inhibition in anaerobic RNRs acts by increasing the flexibility of the flap and GRD, thereby preventing both substrate binding and radical mobilisation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    倒相,或β-呋喃果糖苷酶,是广泛分布在植物和微生物中的代谢酶,它们水解蔗糖并从各种底物释放果糖。转化酶是最早发现的酶之一,第一次调查是在19世纪中叶,成为蛋白质合成的主要生化研究中使用的经典模型,活动,和糖蛋白的分泌。然而,直到20年前,这个酶家族的成员在结构上得到了表征,显示具有β-螺旋桨催化域的双模排列,和一个功能未知的β-夹心结构域。从那以后,对相关植物和真菌酶的许多研究表明,它们基本上是单体的。相比之下,到目前为止,该家族中所有已被表征的酵母酶都显示出由非催化结构域介导的复杂寡聚结构,这也涉及底物结合,以及这种组装如何决定每种酶的特定特异性。在这一章中,我们将回顾酵母转化酶的可用结构,以阐明调节寡聚物形成的机制,并将它们与其他报道的二聚体转化酶进行比较,其中寡聚组装没有明显的功能含义。此外,强调了对蓝细菌和植物转化酶中发现的蔗糖α-(1,2)-键具有绝对特异性的新转化酶家族的最新工作。
    Invertases, or β-fructofuranosidases, are metabolic enzymes widely distributed among plants and microorganisms that hydrolyze sucrose and release fructose from various substrates. Invertase was one of the earliest discovered enzymes, first investigated in the mid-nineteenth century, becoming a classical model used in the primary biochemical studies on protein synthesis, activity, and the secretion of glycoproteins. However, it was not until 20 years ago that a member of this family of enzymes was structurally characterized, showing a bimodular arrangement with a β-propeller catalytic domain, and a β-sandwich domain with unknown function. Since then, many studies on related plant and fungal enzymes have revealed them as basically monomeric. By contrast, all yeast enzymes in this family that have been characterized so far have shown sophisticated oligomeric structures mediated by the non-catalytic domain, which is also involved in substrate binding, and how this assembly determines the particular specificity of each enzyme. In this chapter, we will review the available structures of yeast invertases to elucidate the mechanism regulating oligomer formation and compare them with other reported dimeric invertases in which the oligomeric assembly has no apparent functional implications. In addition, recent work on a new family of invertases with absolute specificity for the α-(1,2)-bond of sucrose found in cyanobacteria and plant invertases is highlighted.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    糖基化磷脂酰肌醇(GPI)锚定蛋白是真核细胞中普遍存在的翻译后修饰。GPI锚定蛋白(GPI-AP)在酶促、信令,监管,和粘附过程。超过20种酶参与GPI合成,附着在客户蛋白质上,依恋后的重塑。GPI转酰胺酶(GPI-T),一个位于内质网膜的大型复合体,通过用GPI替换前蛋白的C末端信号肽来催化附着步骤。在过去的三十年里,对转酰胺化反应的机理进行了广泛的研究,GPI-T复合体的组成部分,每个亚基的作用,和底物特异性。最近的两项研究报道了GPI-T的三维结构,它们代表了路径的第一个结构。这些结构提供了详细的组装机制,使先前的生化结果和亚基依赖性稳定性数据合理化。虽然结构数据证实了PIGK的催化作用,它可能使用胱天蛋白酶样机制来切割前蛋白,他们认为与以前提出的不同,GPAA1不是催化亚基。该结构还揭示了GPI结合的共享腔。有点出乎意料,PIGT,一种单程膜蛋白,在GPI识别中起着至关重要的作用。与组装机制和活动站点体系结构一致,大多数疾病突变发生在活性位点或亚基界面附近。最后,催化对偶位于距离GPI结合位点的膜界面约22埃外,并且这种结构可以通过底物和细长活性位点之间的拓扑匹配来赋予底物特异性。到目前为止进行的研究揭示了GPI锚定所涉及的复杂过程,并为GPI-T的进一步机理研究铺平了道路。
    Glycosylphosphatidylinositol (GPI) anchoring of proteins is a ubiquitous posttranslational modification in eukaryotic cells. GPI-anchored proteins (GPI-APs) play critical roles in enzymatic, signaling, regulatory, and adhesion processes. Over 20 enzymes are involved in GPI synthesis, attachment to client proteins, and remodeling after attachment. The GPI transamidase (GPI-T), a large complex located in the endoplasmic reticulum membrane, catalyzes the attachment step by replacing a C-terminal signal peptide of proproteins with GPI. In the last three decades, extensive research has been conducted on the mechanism of the transamidation reaction, the components of the GPI-T complex, the role of each subunit, and the substrate specificity. Two recent studies have reported the three-dimensional architecture of GPI-T, which represent the first structures of the pathway. The structures provide detailed mechanisms for assembly that rationalizes previous biochemical results and subunit-dependent stability data. While the structural data confirm the catalytic role of PIGK, which likely uses a caspase-like mechanism to cleave the proproteins, they suggest that unlike previously proposed, GPAA1 is not a catalytic subunit. The structures also reveal a shared cavity for GPI binding. Somewhat unexpectedly, PIGT, a single-pass membrane protein, plays a crucial role in GPI recognition. Consistent with the assembly mechanisms and the active site architecture, most of the disease mutations occur near the active site or the subunit interfaces. Finally, the catalytic dyad is located ~22 Å away from the membrane interface of the GPI-binding site, and this architecture may confer substrate specificity through topological matching between the substrates and the elongated active site. The research conducted thus far sheds light on the intricate processes involved in GPI anchoring and paves the way for further mechanistic studies of GPI-T.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生命系统包含一个庞大的代谢反应网络,提供大量的酶和细胞作为化学过程的潜在生物催化剂。蛋白质和细胞生物催化剂的特性-高选择性,在环境友好条件下控制反应顺序和操作的能力提供了高效生产分子的方法,同时降低了工业化学的成本和环境影响。此外,生物催化提供了产生化学合成可能无法获得的化学结构和功能的机会。这里我们考虑酶的发展,生物合成途径和细胞工程,使其能够用于催化新的化学和超越。
    Living systems contain a vast network of metabolic reactions, providing a wealth of enzymes and cells as potential biocatalysts for chemical processes. The properties of protein and cell biocatalysts-high selectivity, the ability to control reaction sequence and operation in environmentally benign conditions-offer approaches to produce molecules at high efficiency while lowering the cost and environmental impact of industrial chemistry. Furthermore, biocatalysis offers the opportunity to generate chemical structures and functions that may be inaccessible to chemical synthesis. Here we consider developments in enzymes, biosynthetic pathways and cellular engineering that enable their use in catalysis for new chemistry and beyond.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    酶是自然界催化复杂反应的最终机制。虽然酶是进化来催化特定的反应,它们在反应和底物选择方面也表现出显著的混杂性。金属酶在其活性位点含有金属离子或金属辅因子,这对它们的催化活性至关重要。取决于金属及其配位环境,金属离子或辅因子可以作为路易斯酸或碱和氧化还原中心起作用,因此可以催化大量的自然反应。事实上,金属离子氧化态的多功能性为金属酶提供了高水平的催化适应性和混杂性。在这一章中,我们讨论了不同方面的混杂在金属酶使用几个最近的实验和理论工作作为案例研究。我们通过引入滥交的概念开始我们的讨论,然后我们在分子水平上深入研究对滥交的机理。
    Enzymes are nature\'s ultimate machinery to catalyze complex reactions. Though enzymes are evolved to catalyze specific reactions, they also show significant promiscuity in reactions and substrate selection. Metalloenzymes contain a metal ion or metal cofactor in their active site, which is crucial in their catalytic activity. Depending on the metal and its coordination environment, the metal ion or cofactor may function as a Lewis acid or base and a redox center and thus can catalyze a plethora of natural reactions. In fact, the versatility in the oxidation state of the metal ions provides metalloenzymes with a high level of catalytic adaptability and promiscuity. In this chapter, we discuss different aspects of promiscuity in metalloenzymes by using several recent experimental and theoretical works as case studies. We start our discussion by introducing the concept of promiscuity and then we delve into the mechanistic insight into promiscuity at the molecular level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    碱基的脱氨基是DNA损伤的一种形式,通过活细胞的水解和亚硝化自发发生,从腺嘌呤产生次黄嘌呤。大肠杆菌核酸内切酶V(eEndoV)切割含有次黄嘌呤的双链DNA,而人类核酸内切酶V(hEndoV)切割含有次黄嘌呤的RNA;然而,hEndoV在体内的功能尚不清楚。迄今为止,hEndoV仅使用次黄嘌呤进行了检查,因为它与位于切割位点的碱基紧密结合。这里,我们检查了hEndoV是否切割其他病变(例如,AP站点,6-甲基腺嘌呤,黄嘌呤)以揭示其功能以及2'-核苷修饰是否会影响其切割活性。我们观察到hEndoV是次黄嘌呤特异性的;其活性最高,核糖中的2'-OH修饰。基于其碱基序列比较hEndoV的切割活性。我们观察到它对位于次黄嘌呤裂解位点3'末端的腺嘌呤具有特异性,乳沟之前和之后。这些数据表明hEndoV识别并切割在polyA尾巴上产生的肌苷以维持RNA质量。我们的结果提供了对hEndoV在体内作用的机制见解。
    Deamination of bases is a form of DNA damage that occurs spontaneously via the hydrolysis and nitrosation of living cells, generating hypoxanthine from adenine. E. coli endonuclease V (eEndoV) cleaves hypoxanthine-containing double-stranded DNA, whereas human endonuclease V (hEndoV) cleaves hypoxanthine-containing RNA; however, hEndoV in vivo function remains unclear. To date, hEndoV has only been examined using hypoxanthine, because it binds closely to the base located at the cleavage site. Here, we examined whether hEndoV cleaves other lesions (e.g., AP site, 6-methyladenine, xanthine) to reveal its function and whether 2\'-nucleoside modification affects its cleavage activity. We observed that hEndoV is hypoxanthine-specific; its activity was the highest with 2\'-OH modification in ribose. The cleavage activity of hEndoV was compared based on its base sequence. We observed that it has specificity for adenine located on the 3\'-end of hypoxanthine at the cleavage site, both before and after cleavage. These data suggest that hEndoV recognizes and cleaves the inosine generated on the poly A tail to maintain RNA quality. Our results provide mechanistic insight into the role of hEndoV in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: English Abstract
    许多病毒,包括SARS-CoV-2,这是导致COVID-19大流行的冠状病毒,通过蛋白水解酶激活的细胞-病毒膜融合过程进入宿主细胞。通常,这些酶是宿主细胞蛋白酶。鉴定激活病毒的蛋白酶不是一项简单的任务,但对于开发新的抗病毒药物很重要。在这项研究中,我们开发了一种生物信息学方法来鉴定可以切割病毒包膜糖蛋白的蛋白酶。所提出的方法涉及使用用于人类蛋白酶的底物特异性的预测模型,以及基于其3D结构预测蛋白质区域对蛋白质水解的脆弱性的结构分析方法的应用。使用有关其已知底物的信息,为169个人蛋白酶构建了特异性模型。先前开发的用于潜在蛋白水解位点的结构分析的方法与特异性模型平行应用。对SARS-CoV-2刺突蛋白进行了拟议方法的验证,其蛋白水解位点已被充分研究。
    Many viruses, including SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, enter host cells through a process of cell-viral membrane fusion that is activated by proteolytic enzymes. Typically, these enzymes are host cell proteases. Identifying the proteases that activate the virus is not a simple task but is important for the development of new antiviral drugs. In this study, we developed a bioinformatics method for identifying proteases that can cleave viral envelope glycoproteins. The proposed approach involves the use of predictive models for the substrate specificity of human proteases and the application of a structural analysis method for predicting the vulnerability of protein regions to proteolysis based on their 3D structures. Specificity models were constructed for 169 human proteases using information on their known substrates. A previously developed method for structural analysis of potential proteolysis sites was applied in parallel with specificity models. Validation of the proposed approach was performed on the SARS-CoV-2 spike protein, whose proteolysis sites have been well studied.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大萜合酶(large-TS)是新的TS家族。发现的第一个大型TS来自枯草芽孢杆菌(BsuTS),它参与了C35倍半萜的生物合成。大TS是仅有的能够生物合成芝麻的酶,并且与规范的I类和II类TS不具有任何序列同源性。因此,大TSs的研究有望扩大萜烯领域的化学空间。在这一章中,我们描述了用于识别大型TS的实验方法,以及它们的功能和结构分析。此外,已经描述了几种与大TS底物的生物合成有关的酶。
    Large terpene synthases (large-TSs) are a new family of TSs. The first large-TS discovered was from Bacillus subtilis (BsuTS), which is involved in the biosynthesis of a C35 sesquarterpene. Large-TSs are the only enzymes that enable the biosynthesis of sesquarterpenes and do not share any sequence homology with canonical Class I and II TSs. Thus, the investigation of large-TSs is promising for expanding the chemical space in the terpene field. In this chapter, we describe the experimental methods used for identifying large-TSs, as well as their functional and structural analyses. Additionally, several enzymes related to the biosynthesis of large-TS substrates have been described.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    钒依赖性卤代过氧化物酶(VHPOs)是一个独特的酶家族,利用钒酸盐,含水卤离子,和过氧化氢以产生可并入富电子有机基质中的亲电子卤素物质。这种卤素物质可以与萜烯底物反应,并以使人联想到II类萜合酶的方式引发卤诱导的环化。虽然并非所有VHPO都以这种身份行事,来自藻类和放线菌物种的几个值得注意的例子已经被表征为催化萜烯和类萜烯底物上的区域选择性和对映选择性反应,通过单一酶的作用产生复杂的卤化环萜烯。在这篇文章中,我们描述的表达,净化,和NapH4的化学分析,NapH4是一种难以表达的表征的VHPO,可催化氯盐诱导的其类硫萜类底物的环化。
    Vanadium-dependent haloperoxidases (VHPOs) are a unique family of enzymes that utilize vanadate, an aqueous halide ion, and hydrogen peroxide to produce an electrophilic halogen species that can be incorporated into electron rich organic substrates. This halogen species can react with terpene substrates and trigger halonium-induced cyclization in a manner reminiscent of class II terpene synthases. While not all VHPOs act in this capacity, several notable examples from algal and actinobacterial species have been characterized to catalyze regio- and enantioselective reactions on terpene and meroterpenoid substrates, resulting in complex halogenated cyclic terpenes through the action of single enzyme. In this article, we describe the expression, purification, and chemical assays of NapH4, a difficult to express characterized VHPO that catalyzes the chloronium-induced cyclization of its meroterpenoid substrate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用萜烯合酶的混杂活性进行非天然萜烯的化学酶合成,可以扩大具有潜在新生物活性的萜类化合物的化学空间。在这份报告中,我们描述了制备新型蚜虫引诱剂的方案,(S)-14,15-二甲基雌二醇D,通过利用加拿大一枝黄花的(S)-germacreneD合酶的混杂性,并使用工程化的生物催化途径将戊烯醇转化为萜类化合物。该方法使用五种酶的组合,分两步进行萜类化学信息素的制备:(1)五或六碳前体的双磷酸化(prenol,异戊烯醇和甲基-异戊烯醇)由恶性疟原虫胆碱激酶和甘氏异戊烯基磷酸酯激酶催化形成DMADP,IDP和甲基IDP,(2)嗜热脂肪土芽孢杆菌催化的链延长和环化(2E,6E)-法尼基二磷酸合酶和加拿大S。(S)-germacreneD合酶产生(S)-germacreneD和(S)-14,15-二甲基germacreneD。使用此方法,新的非天然萜类化合物很容易获得,该方法可用于生产具有潜在新应用的不同萜类类似物和萜类化合物衍生物。
    Chemoenzymatic synthesis of non-natural terpenes using the promiscuous activity of terpene synthases allows for the expansion of the chemical space of terpenoids with potentially new bioactivities. In this report, we describe protocols for the preparation of a novel aphid attractant, (S)-14,15-dimethylgermacrene D, by exploiting the promiscuity of (S)-germacrene D synthase from Solidago canadensis and using an engineered biocatalytic route to convert prenols to terpenoids. The method uses a combination of five enzymes to carry out the preparation of terpenoid semiochemicals in two steps: (1) diphosphorylation of five or six carbon precursors (prenol, isoprenol and methyl-isoprenol) catalyzed by Plasmodium falciparum choline kinase and Methanocaldococcus jannaschii isopentenyl phosphate kinase to form DMADP, IDP and methyl-IDP, and (2) chain elongation and cyclization catalyzed by Geobacillus stearothermophilus (2E,6E)-farnesyl diphosphate synthase and S. canadensis (S)-germacrene D synthase to produce (S)-germacrene D and (S)-14,15-dimethylgermacrene D. Using this method, new non-natural terpenoids are readily accessible and the approach can be adopted to produce different terpene analogs and terpenoid derivatives with potential novel applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号