Spinal Cord Regeneration

脊髓再生
  • 文章类型: Journal Article
    脊髓是脊椎动物胚胎发生过程中发育的第一个中枢神经系统结构。强调它对生物体的重要性。因为它的早期形成,羊膜对发育中的脊髓的可及性具有挑战性,通常是侵入性的,适用于哺乳动物等模型系统的实验方法是有限的。相比之下,两栖动物,一般来说,非洲爪蛙非洲爪狼,特别是,提供模型系统,其中脊髓的形成,脊髓神经元和神经胶质的分化以及脊髓神经元和神经肌肉突触的建立可以很容易地研究,而对整个生物体的扰动很小。基因编辑和显微镜的重大进展以及最近完成的非洲爪狼基因组测序重新激发了这种经典模型物种的使用,以阐明脊髓形成的机制,发展,功能和再生。
    The spinal cord is the first central nervous system structure to develop during vertebrate embryogenesis, underscoring its importance to the organism. Because of its early formation, accessibility to the developing spinal cord in amniotes is challenging, often invasive and the experimental approaches amenable to model systems like mammals are limited. In contrast, amphibians, in general and the African-clawed frog Xenopus laevis, in particular, offer model systems in which the formation of the spinal cord, the differentiation of spinal neurons and glia and the establishment of spinal neuron and neuromuscular synapses can be easily investigated with minimal perturbations to the whole organism. The significant advances on gene editing and microscopy along with the recent completion of the Xenopus laevis genome sequencing have reinvigorated the use of this classic model species to elucidate the mechanisms of spinal cord formation, development, function and regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Regeneration of damaged neurons and recovery of sensation and motor function after complete spinal cord injury (SCI) are challenging. We previously developed a collagen scaffold, NeuroRegen, to promote axonal growth along collagen fibers and inhibit glial scar formation after SCI. When functionalized with multiple biomolecules, this scaffold promoted neurological regeneration and functional recovery in animals with SCI. In this study, eight patients with chronic complete SCI were enrolled to examine the safety and efficacy of implanting NeuroRegen scaffold with human umbilical cord mesenchymal stem cells (hUCB-MSCs). Using intraoperative neurophysiological monitoring, we identified and surgically resected scar tissues to eliminate the inhibitory effect of glial scarring on nerve regeneration. We then implanted NeuroRegen scaffold loaded with hUCB-MSCs into the resection sites. No adverse events (infection, fever, headache, allergic reaction, shock, perioperative complications, aggravation of neurological status, or cancer) were observed during 1 year of follow-up. Primary efficacy outcomes, including expansion of sensation level and motor-evoked potential (MEP)-responsive area, increased finger activity, enhanced trunk stability, defecation sensation, and autonomic neural function recovery, were observed in some patients. Our findings suggest that combined application of NeuroRegen scaffold and hUCB-MSCs is safe and feasible for clinical therapy in patients with chronic SCI. Our study suggests that construction of a regenerative microenvironment using a scaffold-based strategy may be a possible future approach to SCI repair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Controlled Clinical Trial
    Nasal olfactory mucosa is an accessible source of olfactory ensheathing cells for spinal cord regeneration. However, safety of the biopsy technique and the effects on sense of smell and nasal function have not been robustly assessed in the form of a prospective controlled study.
    National Health Service ethical approval was granted for this study of 131 patients. The primary outcome measure was olfactory function and the secondary outcomes included postoperative complication rates as well as the SNOT 22, NOSE scale scores and surgeon reported (Lund-Kennedy score) nasal function outcomes.
    65 patients underwent functional endoscopic sinus surgery (FESS) and superior turbinate biopsy, and 66 patients underwent FESS only as the control group. There was no significant difference in complication rates between the two groups. All Olfactory function outcomes were unaffected following olfactory biopsy. We demonstrated that the patients quality of life and nasal patency as well as surgeon reported outcome measurements remain unaffected following olfactory harvesting.
    We have uniquely provided level 2a evidence for the safety of endoscopic biopsy of olfactory mucosa, which does not affect nasal function or the sense of smell compared to standard FESS without biopsy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The development of therapeutic approaches for spinal cord injury (SCI) is still a challenging goal to achieve. The pathophysiological features of chronic SCI are glial scar and cavity formation: an effective therapy will require contribution of different disciplines such as materials science, cell biology, drug delivery and nanotechnology. One of the biggest challenges in SCI regeneration is to create an artificial scaffold that could mimic the extracellular matrix (ECM) and support nervous system regeneration. Electrospun constructs and hydrogels based on self-assembling peptides (SAPs) have been recently preferred. In this work SAPs and polymers were assembled by using a coaxial electrospinning setup. We tested the biocompatibility of two types of coaxially electrospun microchannels: the first one made by a core of poly(ε-caprolactone) and poly(d,l-lactide-co-glycolide) (PCL-PLGA) and a shell of an emulsion of PCL-PLGA and a functionalized self-assembling peptide Ac-FAQ and the second one made by a core of Ac-FAQ and a shell of PCL-PLGA. Moreover, we tested an annealed scaffold by PCL-PLGA microchannel heat-treatment. The properties of coaxial scaffolds were analyzed using scanning electron microscopy (SEM), Fourier transform spectroscopy (FTIR), contact angle measurements and differential scanning calorimetry (DSC). In vitro cytotoxicity was assessed via viability and differentiation assays with neural stem cells (NSCs); whereas in vivo inflammatory response was evaluated following scaffold implantation in rodent spinal cords. Emulsification of the outer shell turned out to be the best choice in terms of cell viability and tissue response: thus suggesting the potential of using functionalized SAPs in coaxial electrospinning for applications in regenerative medicine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Upon spinal cord injury, severed axons and the surrounding tissue undergo a series of pathological changes, including retraction of proximal axon ends, degeneration of distal axon ends and formation of a dense fibrotic scar that inhibits regenerative axonal growth. Until recently it was technically challenging to study these dynamic events in the mammalian central nervous system. Here, we describe and discuss the recently established genetic tract tracing approach of in vivo imaging. This technique allows studying acute pathological events following a spinal cord lesion. In addition, the novel development of chronic spinal cord preparations such as the implanted spinal chamber now also enables long-term imaging studies. Hence, in vivo imaging allows the direct observation of acute and chronic dynamic degenerative and regenerative events of individual neurons after traumatic injury in the living animal.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • DOI:
    文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号