Spatial attention

空间注意力
  • 文章类型: Journal Article
    有证据表明,皮层下结构在高级认知功能中起作用,例如空间注意力的分配。虽然人类有大量证据表明后α波段振荡是由空间注意力调制的,关于皮质下区域如何促成这些振荡调制,特别是在不同的认知挑战条件下。在这项研究中,我们结合了MEG和结构MRI数据,通过采用具有不同感知负荷水平的提示空间注意力范式,研究了皮质下结构在控制注意力资源分配中的作用.我们询问丘脑和基底神经节的体积测量的半球偏侧化是否可以预测α带功率的半球调制。苍白球的横向不对称,尾状核,和丘脑预测后验α振荡的注意力相关调制。当感知负荷被施加到目标上并且牵张器是显着的尾状核不对称性时,可以预测α带调制。当任一目标具有高负载时,苍白球可以预测α带调制,或者分心者很突出,但不是两者都有。最后,当任务的两个组成部分都没有感知要求时,丘脑的不对称性预测了α带调制。除了提供对皮层下电路的新见解,用空间注意力控制阿尔法振荡,我们的发现也可能具有临床应用价值.我们提供了一个框架,可用于检测与神经系统疾病相关的皮层下区域的结构变化如何反映在振荡脑活动的调节中。
    Evidence suggests that subcortical structures play a role in high-level cognitive functions such as the allocation of spatial attention. While there is abundant evidence in humans for posterior alpha band oscillations being modulated by spatial attention, little is known about how subcortical regions contribute to these oscillatory modulations, particularly under varying conditions of cognitive challenge. In this study, we combined MEG and structural MRI data to investigate the role of subcortical structures in controlling the allocation of attentional resources by employing a cued spatial attention paradigm with varying levels of perceptual load. We asked whether hemispheric lateralization of volumetric measures of the thalamus and basal ganglia predicted the hemispheric modulation of alpha-band power. Lateral asymmetry of the globus pallidus, caudate nucleus, and thalamus predicted attention-related modulations of posterior alpha oscillations. When the perceptual load was applied to the target and the distractor was salient caudate nucleus asymmetry predicted alpha-band modulations. Globus pallidus was predictive of alpha-band modulations when either the target had a high load, or the distractor was salient, but not both. Finally, the asymmetry of the thalamus predicted alpha band modulation when neither component of the task was perceptually demanding. In addition to delivering new insight into the subcortical circuity controlling alpha oscillations with spatial attention, our finding might also have clinical applications. We provide a framework that could be followed for detecting how structural changes in subcortical regions that are associated with neurological disorders can be reflected in the modulation of oscillatory brain activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    皮质深处结构大小的不对称解释了大脑中的α振荡如何对注意力的转移做出反应。
    Asymmetries in the size of structures deep below the cortex explain how alpha oscillations in the brain respond to shifts in attention.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们学习环境中嵌入的规律性的能力是我们认知系统的一个基本方面。这种统计学习依赖于注意力吗?关于这个主题的研究很少,并且产生了不同的发现。在这项预先注册的研究中,我们研究了空间注意力在统计学习中的作用,特别是在学过的干扰物位置抑制中。这种现象是指在视觉搜索过程中,与低概率位置相比,参与者在高概率位置忽略显著干扰因素方面表现得更好,即在概率失衡停止后很长时间内,这种偏差会持续存在.参与者搜索形状单例目标,有时会出现颜色单例干扰物。在学习阶段,与低概率位置相比,彩色单例干扰物更可能出现在高概率位置。至关重要的是,我们通过让实验组在搜索显示之前将注意力集中在目标位置来操纵空间注意力,使用100%信息的空间前序,而对照组是中性的,无信息的提示。在随后的测试阶段,彩色单例干扰物同样可能出现在任何位置,并且没有提示。不出所料,中性线索组的结果重复了之前的发现.至关重要的是,对于信息提示组,当注意力从它转移时(在学习期间),来自干扰物的干扰是最小的,并且在测试期间没有观察到统计学习。审判间启动占了学习过程中发现的小统计学习效果。这些发现表明,视觉搜索中的统计学习需要注意。
    Our ability to learn the regularities embedded in our environment is a fundamental aspect of our cognitive system. Does such statistical learning depend on attention? Research on this topic is scarce and has yielded mixed findings. In this preregistered study, we examined the role of spatial attention in statistical learning, and specifically in learned distractor-location suppression. This phenomenon refers to the finding that during visual search, participants are better at ignoring a salient distractor at a high-probability location than at low-probability locations - a bias persisting long after the probability imbalance has ceased. Participants searched for a shape-singleton target and a color-singleton distractor was sometimes present. During the learning phase, the color-singleton distractor was more likely to appear in the high-probability location than in the low-probability locations. Crucially, we manipulated spatial attention by having the experimental group focus their attention on the target\'s location in advance of the search display, using a 100%-informative spatial precue, while the control group was presented with a neutral, uninformative cue. During the subsequent test phase, the color-singleton distractor was equally likely to appear at any location and there were no cues. As expected, the results for the neutral-cue group replicated previous findings. Crucially, for the informative-cue group, interference from the distractor was minimal when attention was diverted from it (during learning) and no statistical learning was observed during test. Intertrial priming accounted for the small statistical-learning effect found during learning. These findings show that statistical learning in visual search requires attention.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    傅里叶重叠显微术(FPM)是一种基于光学原理的显微成像技术。它采用傅立叶光学来分离和组合来自样品的不同光学信息。然而,在成像过程中引入的噪声往往导致重建图像的分辨率较差。本文设计了一种基于残差局部混合网络的方法来提高傅立叶重叠重建图像的质量。通过将通道注意力和空间注意力纳入FPM重建过程,提高了网络重构的效率,减少了重构时间。此外,高斯扩散模型的引入进一步减少了相干伪影,提高了图像重建质量。对比实验结果表明,该网络具有较好的重建质量,在主观观察和客观定量评价方面都优于现有方法。
    Fourier Ptychographic Microscopy (FPM) is a microscopy imaging technique based on optical principles. It employs Fourier optics to separate and combine different optical information from a sample. However, noise introduced during the imaging process often results in poor resolution of the reconstructed image. This article has designed an approach based on a residual local mixture network to improve the quality of Fourier ptychographic reconstruction images. By incorporating channel attention and spatial attention into the FPM reconstruction process, the network enhances the efficiency of the network reconstruction and reduces the reconstruction time. Additionally, the introduction of the Gaussian diffusion model further reduces coherent artifacts and improves image reconstruction quality. Comparative experimental results indicate that this network achieves better reconstruction quality, and outperforming existing methods in both subjective observation and objective quantitative evaluation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这项工作旨在通过开发用于实际临床CBCT投影数据的深度学习(DL)方法来改善有限角度(LA)锥形束计算机断层扫描(CBCT),这是第一个基于临床投影数据的LA-CBCT的可行性研究,据我们所知.在放射治疗(RT)中,CBCT通常用作患者设置的机载成像模态。与诊断性CT相比,CBCT具有较长的采集时间,例如,一个完整的360°旋转60秒,受到运动伪影的影响。因此,LA-CBCT,如果可以实现,对RT的目的非常感兴趣,除了辐射剂量外,它还按比例减少了扫描时间。然而,LA-CBCT遭受严重的楔形伪影和图像失真。针对真实的临床预测数据,我们已经探索了各种DL方法,例如图像/数据/混合域方法,并最终开发了一种所谓的结构增强注意力网络(SEA-Net)方法,该方法在我们实施的DL方法中具有来自临床投影数据的最佳图像质量。具体来说,提出的SEA-Net采用专门的结构增强子网络来促进纹理保存。观察到重建图像中楔形伪影的分布是不均匀的,空间注意模块用于强调相关区域,而忽略不相关区域,这导致更准确的纹理恢复。
    This work aims to improve limited-angle (LA) cone beam computed tomography (CBCT) by developing deep learning (DL) methods for real clinical CBCT projection data, which is the first feasibility study of clinical-projection-data-based LA-CBCT, to the best of our knowledge. In radiation therapy (RT), CBCT is routinely used as the on-board imaging modality for patient setup. Compared to diagnostic CT, CBCT has a long acquisition time, e.g., 60 seconds for a full 360° rotation, which is subject to the motion artifact. Therefore, the LA-CBCT, if achievable, is of the great interest for the purpose of RT, for its proportionally reduced scanning time in addition to the radiation dose. However, LA-CBCT suffers from severe wedge artifacts and image distortions. Targeting at real clinical projection data, we have explored various DL methods such as image/data/hybrid-domain methods and finally developed a so-called Structure-Enhanced Attention Network (SEA-Net) method that has the best image quality from clinical projection data among the DL methods we have implemented. Specifically, the proposed SEA-Net employs a specialized structure enhancement sub-network to promote texture preservation. Based on the observation that the distribution of wedge artifacts in reconstruction images is non-uniform, the spatial attention module is utilized to emphasize the relevant regions while ignores the irrelevant ones, which leads to more accurate texture restoration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    野生荒漠草原的特点是栖息地多样,植物分布不均,植物类之间的相似性,和植物阴影的存在。然而,现有的检测荒漠草原植物物种的模型精度低,需要大量的参数,并招致高昂的计算成本,使它们不适合在这些环境中的工厂识别场景中部署。为了应对这些挑战,本文提出了一种轻量级、快速的植物物种检测系统,称为YOLOv8s-KDT,为复杂的沙漠草原环境量身定制。首先,该模型引入了一种动态卷积KernelWarehouse方法,以降低卷积内核的维数并增加其数量,从而在参数效率和表示能力之间实现更好的平衡。其次,该模型将三元组注意力纳入其特征提取网络,有效地捕捉信道与空间位置的关系,增强模型的特征提取能力。最后,动态探测头的引入解决了与目标探测头和注意力不均匀有关的问题,从而改进目标检测头的表示,同时降低计算成本。实验结果表明,升级后的YOLOv8s-KDT模型能够快速有效地识别荒漠草地植物。与原始模型相比,FLOP下降50.8%,精度提高了4.5%,mAP增加了5.6%。目前,将YOLOv8s-KDT模型部署在宁夏荒漠草原移动植物识别APP和定点生态信息观测平台中。它有助于调查整个宁夏地区的荒漠草原植被分布以及长期观察和跟踪特定地区的植物生态信息,比如大水坑,黄集田,和宁夏的红寺步。
    Wild desert grasslands are characterized by diverse habitats, uneven plant distribution, similarities among plant class, and the presence of plant shadows. However, the existing models for detecting plant species in desert grasslands exhibit low precision, require a large number of parameters, and incur high computational cost, rendering them unsuitable for deployment in plant recognition scenarios within these environments. To address these challenges, this paper proposes a lightweight and fast plant species detection system, termed YOLOv8s-KDT, tailored for complex desert grassland environments. Firstly, the model introduces a dynamic convolutional KernelWarehouse method to reduce the dimensionality of convolutional kernels and increase their number, thus achieving a better balance between parameter efficiency and representation ability. Secondly, the model incorporates triplet attention into its feature extraction network, effectively capturing the relationship between channel and spatial position and enhancing the model\'s feature extraction capabilities. Finally, the introduction of a dynamic detection head tackles the issue related to target detection head and attention non-uniformity, thus improving the representation of the target detection head while reducing computational cost. The experimental results demonstrate that the upgraded YOLOv8s-KDT model can rapidly and effectively identify desert grassland plants. Compared to the original model, FLOPs decreased by 50.8%, accuracy improved by 4.5%, and mAP increased by 5.6%. Currently, the YOLOv8s-KDT model is deployed in the mobile plant identification APP of Ningxia desert grassland and the fixed-point ecological information observation platform. It facilitates the investigation of desert grassland vegetation distribution across the entire Ningxia region as well as long-term observation and tracking of plant ecological information in specific areas, such as Dashuikeng, Huangji Field, and Hongsibu in Ningxia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    一个有影响力的空间注意力模型假设三种主要的注意力导向机制:脱离接触,shifting,和订婚。早期研究将脱离接触缺陷与上顶叶损伤联系起来,无论半球或存在空间忽视。随后的研究支持更多腹侧顶区的参与,尤其是在右半球,并将空间忽视与同侧线索的缺乏脱离联系起来。然而,以前的病变研究面临严重的局限性,例如小样本量和没有忽视的脑损伤控制。此外,一些研究采用象征性提示或使用长提示-目标间隔,这可能无法揭示受损的脱离接触。我们在这里使用机器学习方法对89例局灶性脑部病变的左侧(LH)或右侧(RH)大脑半球进行病变症状映射(LSM)。一组54名健康参与者作为对照。用于发现脱离接触缺陷的范式采用了视觉外围和短提示目标间隔的非预测性提示,针对外源性注意力。感兴趣的主要因素是群体(健康参与者,LH,RH),目标位置(左,右半场)和提示有效性(有效,无效)。对两个指标进行了LSM分析:有效性效应,计算为无效后的反应时间(RT)与有效线索之间的绝对差,和脱离接触赤字,由对比效度和同义效度之间的差异决定。虽然LH患者显示RTs普遍减慢至对照目标,只有RH患者从病患线索中表现出脱离缺陷。LSM将有效性效应与右侧额叶聚类相关联,还影响了右弓状束的皮质下白质,皮质丘脑途径,和上纵束。相比之下,脱离接触缺陷与涉及右颞顶交界处的损害有关。因此,我们的结果支持右下顶区和后颞区对注意力脱离的关键作用,但也强调了外侧额叶区域的重要性,重新定位注意力。
    An influential model of spatial attention postulates three main attention-orienting mechanisms: disengagement, shifting, and engagement. Early research linked disengagement deficits with superior parietal damage, regardless of hemisphere or presence of spatial neglect. Subsequent studies supported the involvement of more ventral parietal regions, especially in the right hemisphere, and linked spatial neglect to deficient disengagement from ipsilateral cues. However, previous lesion studies faced serious limitations, such as small sample sizes and the lack of brain-injured controls without neglect. Additionally, some studies employed symbolic cues or used long cue-target intervals, which may fail to reveal impaired disengagement. We here used a machine-learning approach to conduct lesion-symptom mapping (LSM) on 89 patients with focal cerebral lesions to the left (LH) or right (RH) cerebral hemisphere. A group of 54 healthy participants served as controls. The paradigm used to uncover disengagement deficits employed non-predictive cues presented in the visual periphery and at short cue-target intervals, targeting exogenous attention. The main factors of interest were group (healthy participants, LH, RH), target position (left, right hemifield) and cue validity (valid, invalid). LSM-analyses were performed on two indices: the validity effect, computed as the absolute difference between reaction times (RTs) following invalid compared to valid cues, and the disengagement deficit, determined by the difference between contralesional and ipsilesional validity effects. While LH patients showed general slowing of RTs to contralesional targets, only RH patients exhibited a disengagement deficit from ipsilesional cues. LSM associated the validity effect with a right lateral frontal cluster, which additionally affected subcortical white matter of the right arcuate fasciculus, the corticothalamic pathway, and the superior longitudinal fasciculus. In contrast, the disengagement deficit was related to damage involving the right temporoparietal junction. Thus, our results support the crucial role of right inferior parietal and posterior temporal regions for attentional disengagement, but also emphasize the importance of lateral frontal regions, for the reorienting of attention.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    注意力通常被视为精神上的聚光灯,它可以像变焦镜头一样在特定的空间位置进行缩放,并具有中心环绕梯度。这里,我们展示了沿着视觉层次结构的信号传输中注意力聚光灯的神经特征。在视网膜V1和下游区域之间进行了fMRI背景连通性分析,以表征两种注意状态下区域间相互作用的空间分布。我们发现,与分散的注意力相比,焦点注意力增强了背景连通性强度的空间梯度。动态因果模型分析进一步揭示了注意力在V1和语外皮层之间的反馈和前馈连接中的作用。在引发强烈拥挤效应的背景下,注意力在背景连通性配置文件中的影响减弱。我们的发现揭示了通过调节人类视觉皮层早期阶段的反复处理来实现信息传输中与上下文相关的注意力优先顺序。
    Attention is often viewed as a mental spotlight, which can be scaled like a zoom lens at specific spatial locations and features a center-surround gradient. Here, we demonstrate a neural signature of attention spotlight in signal transmission along the visual hierarchy. fMRI background connectivity analysis was performed between retinotopic V1 and downstream areas to characterize the spatial distribution of inter-areal interaction under two attentional states. We found that, compared to diffused attention, focal attention sharpened the spatial gradient in the strength of the background connectivity. Dynamic causal modeling analysis further revealed the effect of attention in both the feedback and feedforward connectivity between V1 and extrastriate cortex. In a context which induced a strong effect of crowding, the effect of attention in the background connectivity profile diminished. Our findings reveal a context-dependent attention prioritization in information transmission via modulating the recurrent processing across the early stages in human visual cortex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    中央视野对于阅读和面部识别等活动至关重要。然而,周围视力丧失对日常活动的影响是深远的。虽然中央愿景的重要性已经确立,周边视觉对空间注意力的贡献不太清楚。在这项研究中,我们引入了一种“鼠标眼”方法,作为传统凝视视跟踪的替代方法。我们发现即使在需要中央视觉的任务中,周边视觉有助于内隐注意学习。参与者在Ls中搜索T,T更频繁地出现在一个视觉象限中。早期的研究表明,参与者对T位置概率的认识对他们的学习能力并不重要。当我们限制鼠标光标周围的可见区域时,只有参与者知道目标的位置概率显示学习;那些不知道没有。在外围添加占位符并不能恢复内隐注意学习。一项对照实验表明,当参与者被允许在搜索和移动鼠标以显示目标颜色的同时查看所有项目时,有意识和无意识的参与者都获得了位置概率学习。我们的结果强调了周边视觉在隐性引导注意力中的重要性。没有周边视觉,只有明确的,但不是隐含的,注意学习盛行。
    The central visual field is essential for activities like reading and face recognition. However, the impact of peripheral vision loss on daily activities is profound. While the importance of central vision is well established, the contribution of peripheral vision to spatial attention is less clear. In this study, we introduced a \"mouse-eye\" method as an alternative to traditional gaze-contingent eye tracking. We found that even in tasks requiring central vision, peripheral vision contributes to implicit attentional learning. Participants searched for a T among Ls, with the T appearing more often in one visual quadrant. Earlier studies showed that participants\' awareness of the T location probability was not essential for their ability to learn. When we limited the visible area around the mouse cursor, only participants aware of the target\'s location probability showed learning; those unaware did not. Adding placeholders in the periphery did not restore implicit attentional learning. A control experiment showed that when participants were allowed to see all items while searching and moving the mouse to reveal the target\'s color, both aware and unaware participants acquired location probability learning. Our results underscore the importance of peripheral vision in implicitly guided attention. Without peripheral vision, only explicit, but not implicit, attentional learning prevails.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    解决由于潜在的严重影响而导致的准确跌倒事件检测的关键需求,本文介绍了空间信道和池化增强YouOnlyLookOnce版本5小(SCPE-YOLOv5s)模型。跌倒事件由于其变化的尺度和微妙的姿势特征而对检测提出了挑战。为了解决这个问题,SCPE-YOLOv5将空间注意力引入了高效信道注意力(ECA)网络,这显著增强了模型从空间姿态分布中提取特征的能力。此外,该模型将平均池化层集成到空间金字塔池(SPP)网络中,以支持跌倒姿势的多尺度提取。同时,通过将ECA网络纳入SPP,该模型有效地结合了全局和局部特征,进一步增强了特征提取。本文在公共数据集上验证了SCPE-YOLOv5,证明它达到了88.29%的平均精度,表现优于你只看一次版本5小4.87%。此外,该模型实现每秒57.4帧。因此,SCPE-YOLOv5s为跌倒事件检测提供了一种新颖的解决方案。
    Addressing the critical need for accurate fall event detection due to their potentially severe impacts, this paper introduces the Spatial Channel and Pooling Enhanced You Only Look Once version 5 small (SCPE-YOLOv5s) model. Fall events pose a challenge for detection due to their varying scales and subtle pose features. To address this problem, SCPE-YOLOv5s introduces spatial attention to the Efficient Channel Attention (ECA) network, which significantly enhances the model\'s ability to extract features from spatial pose distribution. Moreover, the model integrates average pooling layers into the Spatial Pyramid Pooling (SPP) network to support the multi-scale extraction of fall poses. Meanwhile, by incorporating the ECA network into SPP, the model effectively combines global and local features to further enhance the feature extraction. This paper validates the SCPE-YOLOv5s on a public dataset, demonstrating that it achieves a mean Average Precision of 88.29 %, outperforming the You Only Look Once version 5 small by 4.87 %. Additionally, the model achieves 57.4 frames per second. Therefore, SCPE-YOLOv5s provides a novel solution for fall event detection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号