Solitary Nucleus

孤立核
  • 文章类型: Journal Article
    中枢神经系统调节进食,啮齿动物和人类的体重和葡萄糖稳态,但位点特异性机制尚不清楚.脑干中包含孤束核(NTS)和后区域(AP)的背侧迷走神经复合体作为调节中心出现,通过监测激素和营养变化来影响能量和葡萄糖平衡。然而,NTS和AP的具体机制代谢作用仍然难以捉摸。这篇小型综述重点介绍了研究它们的不同作用的方法,以及在NTS和AP中生长分化因子15(GDF15)作用和葡萄糖感应的代谢差异和相似性的最新发现。总之,未来的研究旨在表征AP和/或NTS中的激素和葡萄糖传感机制,有可能揭示降低肥胖和糖尿病体重和葡萄糖水平的新目标。
    The central nervous system regulates feeding, weight and glucose homeostasis in rodents and humans, but the site-specific mechanisms remain unclear. The dorsal vagal complex in the brainstem that contains the nucleus of the solitary tract (NTS) and area postrema (AP) emerges as a regulatory center that impacts energy and glucose balance by monitoring hormonal and nutrient changes. However, the specific mechanistic metabolic roles of the NTS and AP remain elusive. This mini-review highlights methods to study their distinct roles and recent findings on their metabolic differences and similarities of growth differentiation factor 15 (GDF15) action and glucose sensing in the NTS and AP. In summary, future research aims to characterize hormonal and glucose sensing mechanisms in the AP and/or NTS carries potential to unveil novel targets that lower weight and glucose levels in obesity and diabetes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    经皮耳迷走神经刺激(taVNS)靶向外耳迷走神经耳支的皮下轴突。它的非侵入性使其成为各种疾病的潜在治疗方法。taVNS在孤束核(NTS)内诱导神经调节作用,由于其广泛的连通性,NTS充当在高级脑区和其他脑干核(例如脊髓三叉神经核;Sp5)引起神经调节的门户。我们的目的是检查NTS和Sp5中α-氯醛糖麻醉的Sprague-Dawley大鼠单神经元电生理反应的刺激参数。还将taVNS与传统宫颈VNS(cVNS)在单个神经元激活上进行比较。具体来说,对一系列频率和强度参数(20-250Hz,0.5-1.0mA)。神经元被归类为阳性,基于活动增加的负面或无反应者,刺激期间活动减少或无反应,分别。频率依赖性分析表明,在NTS和Sp5中,20和100Hz产生的阳性反应者比例最高,1.0mA强度引起最大程度的反应。taVNS和cVNS之间的比较揭示了尾端NTS神经元群体相似的参数特异性激活;然而,单个神经元显示不同的激活谱。后者表明cVNS和taVNS通过不同的神经元途径向NTS发送传入输入。这项研究证明了不同的参数特异性taVNS反应,并开始研究负责taVNS调节的机制。了解负责引发神经调节作用的神经元途径将能够在各种临床疾病中进行更量身定制的taVNS治疗。要点:经皮耳迷走神经刺激(taVNS)通过激活耳朵中的迷走神经传入以诱导神经调节,提供了一种非侵入性替代侵入性颈迷走神经刺激(cVNS)。我们的研究评估了taVNS对孤束核(NTS)和三叉神经脊髓核(Sp5)中神经元放电模式的影响,发现20和100Hz在两个核刺激期间显着增加了神经元活性。taVNS强度的增加不仅增加了Sp5中响应的神经元数量,而且增加了响应的幅度,表明与NTS相比,对taVNS的敏感性提高。cVNS和taVNS之间的比较揭示了相似的整体激活,但对单个神经元的反应不同。显示不同的神经通路。这些结果显示了对taVNS的参数特异性和细胞核特异性反应,并证实taVNS可以在神经元水平上引发与cVNS相当的反应,但它是通过不同的神经元途径实现的。
    Transcutaneous auricular vagus nerve stimulation (taVNS) targets subcutaneous axons in the auricular branch of the vagus nerve at the outer ear. Its non-invasive nature makes it a potential treatment for various disorders. taVNS induces neuromodulatory effects within the nucleus of the solitary tract (NTS), and due to its widespread connectivity, the NTS acts as a gateway to elicit neuromodulation in both higher-order brain regions and other brainstem nuclei (e.g. spinal trigeminal nucleus; Sp5). Our objective was to examine stimulation parameters on single-neuron electrophysiological responses in α-chloralose-anaesthetized Sprague-Dawley rats within NTS and Sp5. taVNS was also compared to traditional cervical VNS (cVNS) on single neuronal activation. Specifically, electrophysiological extracellular recordings were evaluated for a range of frequency and intensity parameters (20-250 Hz, 0.5-1.0 mA). Neurons were classified as positive, negative or non-responders based on increased activity, decreased activity or no response during stimulation, respectively. Frequency-dependent analysis showed that 20 and 100 Hz generated the highest proportion of positive responders in NTS and Sp5 with 1.0 mA intensities eliciting the greatest magnitude of response. Comparisons between taVNS and cVNS revealed similar parameter-specific activation for caudal NTS neuronal populations; however, individual neurons showed different activation profiles. The latter suggests that cVNS and taVNS send afferent input to NTS via different neuronal pathways. This study demonstrates differential parameter-specific taVNS responses and begins an investigation of the mechanisms responsible for taVNS modulation. Understanding the neuronal pathways responsible for eliciting neuromodulatory effects will enable more tailored taVNS treatments in various clinical disorders. KEY POINTS: Transcutaneous auricular vagus nerve stimulation (taVNS) offers a non-invasive alternative to invasive cervical vagus nerve stimulation (cVNS) by activating vagal afferents in the ear to induce neuromodulation. Our study evaluated taVNS effects on neuronal firing patterns in the nucleus of the solitary tract (NTS) and spinal trigeminal nucleus (Sp5) and found that 20 and 100 Hz notably increased neuronal activity during stimulation in both nuclei. Increasing taVNS intensity not only increased the number of neurons responding in Sp5 but also increased the magnitude of response, suggesting a heightened sensitivity to taVNS compared to NTS. Comparisons between cVNS and taVNS revealed similar overall activation but different responses on individual neurons, indicating distinct neural pathways. These results show parameter-specific and nuclei-specific responses to taVNS and confirm that taVNS can elicit responses comparable to cVNS at the neuronal level, but it does so through different neuronal pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    最成功的肥胖疗法,胰高血糖素样肽-1受体(GLP1R)激动剂,引起厌恶反应,如恶心和呕吐1,2,可能有助于其疗效的影响。这里,我们研究了将饱腹感与厌恶联系起来的大脑回路,出乎意料地发现介导这些效应的神经回路在功能上是可分离的。跨药物可获得的GLP1R人群的系统调查显示,基于GLP1的肥胖药物的功效仅需要后脑神经元。后脑GLP1R神经元的体内双光子成像表明,大多数神经元被调整为营养或厌恶刺激,但不是两者都有。此外,后脑亚区的同时成像表明,区域后(AP)GLP1R神经元具有广泛的响应性,而孤束核(NTS)GLP1R神经元偏向营养刺激。引人注目的是,对这些群体的单独操作表明,在没有厌恶的情况下,NTSGLP1R神经元的激活会触发饱腹感,而APGLP1R神经元的激活引发强烈的厌恶与食物摄入减少。解剖和行为分析显示,NTSGLP1R和APGLP1R神经元向不同的下游大脑区域发送投影,以驱动饱腹感和厌恶感,分别。重要的是,GLP1R激动剂甚至在厌恶途径被抑制时减少食物摄取。总的来说,这些发现强调了NTSGLP1R神经元作为一个群体,可以选择性地靶向促进体重减轻,同时避免限制治疗依从性的不良副作用.
    The most successful obesity therapeutics, glucagon-like peptide-1 receptor (GLP1R) agonists, cause aversive responses such as nausea and vomiting1,2, effects that may contribute to their efficacy. Here, we investigated the brain circuits that link satiety to aversion, and unexpectedly discovered that the neural circuits mediating these effects are functionally separable. Systematic investigation across drug-accessible GLP1R populations revealed that only hindbrain neurons are required for the efficacy of GLP1-based obesity drugs. In vivo two-photon imaging of hindbrain GLP1R neurons demonstrated that most neurons are tuned to either nutritive or aversive stimuli, but not both. Furthermore, simultaneous imaging of hindbrain subregions indicated that area postrema (AP) GLP1R neurons are broadly responsive, whereas nucleus of the solitary tract (NTS) GLP1R neurons are biased towards nutritive stimuli. Strikingly, separate manipulation of these populations demonstrated that activation of NTSGLP1R neurons triggers satiety in the absence of aversion, whereas activation of APGLP1R neurons triggers strong aversion with food intake reduction. Anatomical and behavioural analyses revealed that NTSGLP1R and APGLP1R neurons send projections to different downstream brain regions to drive satiety and aversion, respectively. Importantly, GLP1R agonists reduce food intake even when the aversion pathway is inhibited. Overall, these findings highlight NTSGLP1R neurons as a population that could be selectively targeted to promote weight loss while avoiding the adverse side effects that limit treatment adherence.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    反复接触过敏原引发的过度气道收缩,也称为高反应性,是哮喘的标志.尽管已知迷走神经感觉神经元在过敏原诱导的超反应性1-3中起作用,但下游节点的身份仍然知之甚少。在这里,我们绘制了从肺到脑干再回到肺的完整过敏原回路。小鼠反复暴露于吸入的过敏原激活了肥大细胞中孤立道(nTS)神经元的核,白细胞介素-4(IL-4)-和迷走神经依赖性方式。单核RNA测序,然后是基线和过敏原攻击的RNAscope测定,显示Dbh+nTS群体优先被激活。DbhnTS神经元的消融或化学遗传失活减弱了高反应性,而化学遗传激活则促进了高反应性。病毒示踪表明DbhnTS神经元投射到模糊核(NA),并且NA神经元是必要且足以将过敏原信号传递给直接驱动气道收缩的神经节后神经元。向NA递送去甲肾上腺素拮抗剂会减弱高反应性,表明去甲肾上腺素是Dbh+nTS和NA之间的递质。一起,这些发现提供了分子,规范过敏原反应回路关键节点的解剖和功能定义。这些知识说明了如何使用神经调节来控制过敏原诱导的气道高反应性。
    Exaggerated airway constriction triggered by repeated exposure to allergen, also called hyperreactivity, is a hallmark of asthma. Whereas vagal sensory neurons are known to function in allergen-induced hyperreactivity1-3, the identity of downstream nodes remains poorly understood. Here we mapped a full allergen circuit from the lung to the brainstem and back to the lung. Repeated exposure of mice to inhaled allergen activated the nuclei of solitary tract (nTS) neurons in a mast cell-, interleukin-4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA sequencing, followed by RNAscope assay at baseline and allergen challenges, showed that a Dbh+ nTS population is preferentially activated. Ablation or chemogenetic inactivation of Dbh+ nTS neurons blunted hyperreactivity whereas chemogenetic activation promoted it. Viral tracing indicated that Dbh+ nTS neurons project to the nucleus ambiguus (NA) and that NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that directly drive airway constriction. Delivery of noradrenaline antagonists to the NA blunted hyperreactivity, suggesting noradrenaline as the transmitter between Dbh+ nTS and NA. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. This knowledge informs how neural modulation could be used to control allergen-induced airway hyperreactivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    血管紧张素II(Ang-II)的产生是由血容量和渗透压的偏差驱动的,并起到调节血压和液体摄入以维持心血管和水矿物质稳态的作用。这些作用是由Ang-II在中枢神经系统和外周中作用于其1a型受体(AT1aR)介导的。相关的,AT1aR在负责将心血管信息传递到孤束核(NTS)的感觉传入上表达。我们先前已经确定,表达AT1aR的NTS内神经元和迷走神经传入的光学激发(称为NTSAT1aR)模拟了血管拉伸增加的感知,并诱导代偿反应以恢复血压。这里,我们测试NTSAT1aR是否也参与水和钠摄入量的调节。我们将光敏的兴奋性通道视紫红质2(ChR2)或抑制性卤化视紫红质(Halo)定向到含Agtr1a的神经元,并在各种挑战期间在NTS内存在和不存在光学刺激的情况下测量水和氯化钠(NaCl)的摄入量对流体稳态。NTSAT1aR的光学扰动调节NaCl的摄入量,这样激励就会衰减,而抑制增加摄入量。这种效果仅在缺水的情况下观察到,表明NTSAT1aR在细胞内和细胞外液区室失衡期间参与钠摄入量的调节。此外,NTSAT1aR的光学激发增加下丘脑室旁核(PVN)的催产素能神经元内的c-Fos表达,表明NTSAT1aR对钠摄入的调节可能是由催产素介导的。总的来说,这些结果表明,NTSAT1aR对于调节钠摄入相对于感知到的血管伸展变化是足够和必要的.
    Angiotensin-II (Ang-II) production is driven by deviations in blood volume and osmolality, and serves the role of regulating blood pressure and fluid intake to maintain cardiovascular and hydromineral homeostasis. These actions are mediated by Ang-II acting on its type 1a receptor (AT1aR) within the central nervous system and periphery. Of relevance, AT1aR are expressed on sensory afferents responsible for conveying cardiovascular information to the nucleus of the solitary tract (NTS). We have previously determined that optical excitation of neurons and vagal afferents within the NTS that express AT1aR (referred to as NTSAT1aR) mimics the perception of increased vascular stretch and induces compensatory responses to restore blood pressure. Here, we test whether NTSAT1aR are also involved in the modulation of water and sodium intake. We directed the light-sensitive excitatory channelrhodopsin-2 (ChR2) or inhibitory halorhodopsin (Halo) to Agtr1a-containing neurons and measured water and sodium chloride (NaCl) intake in the presence and absence of optical stimulation within the NTS during various challenges to fluid homeostasis. Optical perturbation of NTSAT1aR modulates NaCl intake, such that excitation attenuates, whereas inhibition increases intake. This effect is only observed in the water-deprived condition, suggesting that NTSAT1aR are involved in the regulation of sodium intake during an imbalance in both the intracellular and extracellular fluid compartments. Furthermore, optical excitation of NTSAT1aR increases c-Fos expression within oxytocinergic neurons of the paraventricular nucleus of the hypothalamus (PVN), indicating that the regulation of sodium intake by NTSAT1aR may be mediated by oxytocin. Collectively, these results reveal that NTSAT1aR are sufficient and necessary to modulate sodium intake relative to perceived changes in vascular stretch.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:中枢呼吸化学感受器的激活为呼吸和交感神经输出提供了兴奋驱动。增强的呼吸-交感神经耦合有助于高血压的发生和发展。然而,参与这一过程的特定中心靶标和分子机制仍然难以捉摸。本研究旨在探讨酸敏感离子通道1(ASIC1)在自发性高血压大鼠(SHR)CO2刺激的心肺效应中的作用。
    方法:通过全身体积描记术和遥测记录清醒大鼠的呼吸和血压,分别。Westernblot检测Wistar-Kyoto(WKY)大鼠和SHRNTS区ASIC1蛋白表达差异。通过细胞外记录评估NTS神经元的兴奋性。
    结果:与WKY大鼠相比,在4周龄高血压前期SHR中已经观察到NTS中CO2刺激的心肺效应增强和ASIC1的上调.此外,在麻醉的成年SHR中,对ASIC1的特异性阻断有效地减弱了CO2刺激的NTS神经元放电速率的增加。NTS神经元侧脑室注射ASIC1a阻断剂PcTx1或敲除Asic1可显着降低CO2刺激的通气反应,并减少了CO2刺激的成人SHR动脉压和心率的增加。
    结论:这些研究结果表明,NTS中的ASIC1信号传导失调导致了SHR中观察到的过度的CO2刺激心肺效应。
    OBJECTIVE: Activation of central respiratory chemoreceptors provides excitatory drive to both respiratory and sympathetic outputs. The enhanced respiratory-sympathetic coupling contributes to the onset and development of hypertension. However, the specific central targets and molecular mechanisms involved in this process remain elusive. This study aimed to investigate the role of acid-sensing ion channel 1 (ASIC1) in nucleus tractus solitarii (NTS) neurons in CO2-stimulated cardiorespiratory effects in spontaneously hypertensive rats (SHRs).
    METHODS: Respiration and blood pressure of conscious rats were recorded by whole-body plethysmography and telemetry, respectively. Western blot was used to detect the expression difference of ASIC1 protein in NTS region between Wistar-Kyoto (WKY) rats and SHRs. Excitability of NTS neurons were assessed by extracellular recordings.
    RESULTS: Compared to WKY rats, the enhanced CO2-stimulated cardiopulmonary effect and up-regulation of ASIC1 in the NTS were already observed in 4-week-old prehypertensive SHRs. Furthermore, specific blockade of ASIC1 effectively attenuated the CO2-stimulated increase in firing rate of NTS neurons in anesthetized adult SHRs. Intracerebroventricular injections of the ASIC1a blocker PcTx1 or knockdown Asic1 in NTS neurons significantly reduced the heightened CO2-stimulated ventilatory response, and diminished the CO2-stimulated increase in arterial pressure and heart rate in adult SHRs.
    CONCLUSIONS: These findings showed that dysregulated ASIC1 signaling in the NTS contribute to the exaggerated CO2-stimulated cardiorespiratory effects observed in SHRs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:孤束核(NTS)中表达苯乙醇胺N-甲基转移酶(PNMT)的神经元有助于调节自主神经功能。然而,连接这些神经元和其他脑区的神经回路仍不清楚。本研究旨在探讨NTS中表达PNMT的神经元(NTSPNMT神经元)的连接机制。
    方法:本研究采用的方法包括改良的基于狂犬病病毒的逆行神经追踪技术,常规病毒顺行追踪,和免疫组织化学染色程序。
    结果:总共鉴定了43个向NTSPNMT神经元突出的上游核,跨越几个关键的大脑区域,包括延髓,pons,中脑,小脑,间脑,和端脑。值得注意的是,从中央杏仁核观察到NTSPNMT神经元的密集投影,下丘脑室旁核,区域后,和巨细胞网状核。相比之下,腹外侧延髓,外侧臂旁核,下丘脑外侧区被确定为源自NTSPNMT神经元的轴突末端的主要目的地。此外,在21个核中,相互投影很明显,主要位于延髓内。
    结论:我们的研究结果表明,NTSPNMT神经元与众多细胞核形成广泛的联系,强调它们在重要自主神经功能的稳态调节中的重要作用。
    OBJECTIVE: Phenylethanolamine N-methyltransferase (PNMT)-expressing neurons in the nucleus tractus solitarii (NTS) contribute to the regulation of autonomic functions. However, the neural circuits linking these neurons to other brain regions remain unclear. This study aims to investigate the connectivity mechanisms of the PNMT-expressing neurons in the NTS (NTSPNMT neurons).
    METHODS: The methodologies employed in this study included a modified rabies virus-based retrograde neural tracing technique, conventional viral anterograde tracing, and immunohistochemical staining procedures.
    RESULTS: A total of 43 upstream nuclei projecting to NTSPNMT neurons were identified, spanning several key brain regions including the medulla oblongata, pons, midbrain, cerebellum, diencephalon, and telencephalon. Notably, dense projections to the NTSPNMT neurons were observed from the central amygdaloid nucleus, paraventricular nucleus of the hypothalamus, area postrema, and the gigantocellular reticular nucleus. In contrast, the ventrolateral medulla, lateral parabrachial nucleus, and lateral hypothalamic area were identified as the primary destinations for axon terminals originating from NTSPNMT neurons. Additionally, reciprocal projections were evident among 21 nuclei, primarily situated within the medulla oblongata.
    CONCLUSIONS: Our research findings demonstrate that NTSPNMT neurons form extensive connections with numerous nuclei, emphasizing their essential role in the homeostatic regulation of vital autonomic functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    表达胰高血糖素基因(Gcg)的孤束尾核(cNTS)和中间网状核(IRt)中的神经元在脊髓和许多皮质下脑区域中产生GLP1免疫阳性轴突。中枢GLP1受体信号传导有助于大鼠和小鼠的动机行为和应激反应,其中后脑GLP1神经元被激活以代谢状态依赖性方式表达cFos。本研究检查了GLP1对不同大脑区域的输入是否来自Gcg表达神经元的不同子集,并绘制了由投影定义的GLP1神经群体产生的轴突侧支的集体分布。使用我们的Gcg-Cre敲入大鼠模型,在成年雄性和雌性大鼠中进行Cre依赖性腺相关病毒(AAV1)追踪,以比较IRt与IRt的轴突投影cNTSGLP1神经元。在接受GLP1输入的所有大脑区域观察到重叠的轴突投影,需要注意的是,cNTS注射会产生一些IRt神经元的Cre依赖性标记,反之亦然。在额外的实验中,对特定的间脑或边缘前脑核进行显微注射Cre依赖性逆行AAV(AAVrg),该AAV表达完全标记转导GLP1神经群轴突侧支的报告基因.将AAVrg注射到cNTS和IRt中的每个前脑位点标记的表达Gcg的神经元中。这些标记的神经元的集体轴突侧支进入脊髓,以前报道的每个大脑区域都含有GLP1阳性轴突。这些结果表明,神经支配丘脑PVT的GLP1神经元群体产生的轴突,下丘脑PVH,和/或边缘前脑BST共同支配所有接受GLP1轴突输入的中央区。意义陈述我们新颖的解剖学发现表明,目标定义的前脑投射GLP1神经元群体以广泛的洒水式方式共同投射到下游目标区域,尽管由单个GLP1投射神经元产生的侧支轴突仍有待定义。与研究中心GLP1受体信号通路在生理和行为中的作用的研究结果一起考虑,这些发现支持了我们的新观点,即后脑Gcg表达神经元被定位为同时调节广泛脊髓中的突触传递,脑干,下丘脑,和边缘前脑回路以代谢状态依赖的方式。
    Neurons in the caudal nucleus of the solitary tract (cNTS) and intermediate reticular nucleus (IRt) that express the glucagon gene (Gcg) give rise to glucagon-like peptide 1 (GLP1)-immunopositive axons in the spinal cord and many subcortical brain regions. Central GLP1 receptor signaling contributes to motivated behavior and stress responses in rats and mice, in which hindbrain GLP1 neurons are activated to express c-Fos in a metabolic state-dependent manner. The present study examined whether GLP1 inputs to distinct brain regions arise from distinct subsets of Gcg-expressing neurons, and mapped the distribution of axon collaterals arising from projection-defined GLP1 neural populations. Using our Gcg-Cre knock-in rat model, Cre-dependent adeno-associated virus (AAV) tracing was conducted in adult male and female rats to compare axonal projections of IRt versus cNTS GLP1 neurons. Overlapping projections were observed in all brain regions that receive GLP1 input, with the caveat that cNTS injections produced Cre-dependent labeling of some IRt neurons, and vice versa. In additional experiments, specific diencephalic or limbic forebrain nuclei were microinjected with Cre-dependent retrograde AAVs (AAVrg) that expressed reporters to fully label the axon collaterals of transduced GLP1 neurons. AAVrg injected into each forebrain site labeled Gcg-expressing neurons in both the cNTS and IRt. The collective axon collaterals of labeled neurons entered the spinal cord and every brain region previously reported to contain GLP1-positive axons. These results indicate that the axons of GLP1 neural populations that innervate the thalamic paraventricular nucleus, paraventricular nucleus of the hypothalamus, and/or bed nucleus of the stria terminalis collectively innervate all central regions that receive GLP1 axonal input.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们先前表明,食欲素神经元被缺氧激活,并促进外周化学反射(PCR)介导的低氧通气反应(HVR),主要是通过促进呼吸频率响应。Orexin神经元投射到孤束核(nTS)和下丘脑室旁核(PVN)。PVN对PCR有重要贡献,并含有nTS-促肾上腺皮质激素释放激素(CRH)神经元。我们假设在雄性大鼠中,食欲素神经元通过激活nTS投射的CRH神经元来促进PCR。我们使用神经元束追踪和免疫组织化学(IHC)来量化缺氧激活PVN投射食欲素神经元的程度。我们将其与食欲素受体(OxR)阻断与suvorexant(Suvo,20mg/kg,i.p.)评估食欲素促进PVN中CRH神经元缺氧诱导激活的程度,包括那些投射到nTS的。在不同的大鼠组中,我们测量了系统性食欲素1受体(Ox1R)阻断(SB-334867;1mg/kg)和PVN中特定Ox1R敲除后的PCR。用Suvo阻断OxR减少了缺氧激活的nTS和PVN神经元的数量,包括那些投射到nTS的CRH神经元。低氧增加了活化的PVN-投射食欲素神经元的数量,但对活化的nTS-投射食欲素神经元的数量没有影响。PVN中的全局Ox1R阻断和部分Ox1R敲除显著降低了PCR。Ox1R敲除还减少了nTS中活化的PVN神经元的数量和活化的酪氨酸-羟化酶神经元的数量。我们的发现表明,食欲素通过表达Ox1R的nTS投射CRH神经元促进PCR。重要性陈述先前我们表明食欲素有助于外周化学反射(PCR),但是这种效应的潜在机制仍然未知。在这里,我们表明:1)食欲素受体阻断减少了PVN和nTS的激活;2)缺氧激活了投射到PVN的食欲素神经元,但不是那些投射到nTS的;3)食欲素受体阻断减少了PVN中nTS-投射促肾上腺皮质激素释放激素(CRH)神经元的激活;4)食欲素1受体(Ox1R)阻断和PVN中特定的Ox1R敲低降低了PCR的强度,和5)Ox1R敲除减少nTS中活化的PVN神经元和酪氨酸羟化酶神经元的数量。这些发现表明,PVN-投射食欲素神经元通过Ox1R促进了nTS-投射CRH神经元上的PCR。
    We previously showed that orexin neurons are activated by hypoxia and facilitate the peripheral chemoreflex (PCR)-mediated hypoxic ventilatory response (HVR), mostly by promoting the respiratory frequency response. Orexin neurons project to the nucleus of the solitary tract (nTS) and the paraventricular nucleus of the hypothalamus (PVN). The PVN contributes significantly to the PCR and contains nTS-projecting corticotropin-releasing hormone (CRH) neurons. We hypothesized that in male rats, orexin neurons contribute to the PCR by activating nTS-projecting CRH neurons. We used neuronal tract tracing and immunohistochemistry (IHC) to quantify the degree that hypoxia activates PVN-projecting orexin neurons. We coupled this with orexin receptor (OxR) blockade with suvorexant (Suvo, 20 mg/kg, i.p.) to assess the degree that orexin facilitates the hypoxia-induced activation of CRH neurons in the PVN, including those projecting to the nTS. In separate groups of rats, we measured the PCR following systemic orexin 1 receptor (Ox1R) blockade (SB-334867; 1 mg/kg) and specific Ox1R knockdown in PVN. OxR blockade with Suvo reduced the number of nTS and PVN neurons activated by hypoxia, including those CRH neurons projecting to nTS. Hypoxia increased the number of activated PVN-projecting orexin neurons but had no effect on the number of activated nTS-projecting orexin neurons. Global Ox1R blockade and partial Ox1R knockdown in the PVN significantly reduced the PCR. Ox1R knockdown also reduced the number of activated PVN neurons and the number of activated tyrosine hydroxylase neurons in the nTS. Our findings suggest orexin facilitates the PCR via nTS-projecting CRH neurons expressing Ox1R.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    啮齿动物的慢性间歇性缺氧(CIH)模拟了经历间歇性呼吸的个体中缺氧引起的血压升高。脑干孤束核(nTS)是内脏感觉传入整合的第一个部位,因此对于心肺稳态及其在各种压力源中的适应至关重要。此外,下丘脑室旁核(PVN),部分通过其含有催产素(OT)和/或促肾上腺皮质激素释放激素(CRH)的nTS预测,有助于心肺调节。在nTS内,这些PVN衍生的神经肽改变nTS活性和对缺氧的心肺反应。然而,CIH后它们对nTS活性的贡献尚不完全清楚。我们假设OT和CRH会在CIH之后更大程度地增加nTS活性,并且OT+CRH受体的共激活将进一步放大nTS活性。我们的数据显示,与正常氧对照组相比,10天\'CIH夸大nTS放电,响应CRH的兴奋性突触电流和Ca2流入,通过添加OT进一步增强。CIH增加了CRH受体的补品功能贡献,随着mRNA和蛋白质的升高而发生。一起,我们的数据表明,间歇性缺氧会夸大神经肽对nTS活性的表达和功能。关键点:发作性呼吸和慢性间歇性缺氧(CIH)与自主神经失调有关,包括交感神经系统活动升高。孤束核(nTS)活性的改变有助于这种反应。起源于室旁核(PVN)的神经元,包括那些含有催产素(OT)和促肾上腺皮质激素释放激素(CRH),项目到nTS,调节心肺系统.它们在CIH中的作用尚不清楚。在这项研究中,我们分别关注OT和CRH,并共同关注暴露于ClH或常氧对照的大鼠的nTS活性。我们证明在CIH之后,单独的CRH和OT在更大程度上增加了整体nTS放电,神经元钙内流,向二阶nTS神经元的突触传递,以及OT和CRH受体表达。这些结果提供了对在发作性呼吸期间导致自主神经功能障碍的潜在回路和机制的见解。
    Chronic intermittent hypoxia (CIH) in rodents mimics the hypoxia-induced elevation of blood pressure seen in individuals experiencing episodic breathing. The brainstem nucleus tractus solitarii (nTS) is the first site of visceral sensory afferent integration, and thus is critical for cardiorespiratory homeostasis and its adaptation during a variety of stressors. In addition, the paraventricular nucleus of the hypothalamus (PVN), in part through its nTS projections that contain oxytocin (OT) and/or corticotropin-releasing hormone (CRH), contributes to cardiorespiratory regulation. Within the nTS, these PVN-derived neuropeptides alter nTS activity and the cardiorespiratory response to hypoxia. Nevertheless, their contribution to nTS activity after CIH is not fully understood. We hypothesized that OT and CRH would increase nTS activity to a greater extent following CIH, and co-activation of OT+CRH receptors would further magnify nTS activity. Our data show that compared to their normoxic controls, 10 days\' CIH exaggerated nTS discharge, excitatory synaptic currents and Ca2+ influx in response to CRH, which were further enhanced by the addition of OT. CIH increased the tonic functional contribution of CRH receptors, which occurred with elevation of mRNA and protein. Together, our data demonstrate that intermittent hypoxia exaggerates the expression and function of neuropeptides on nTS activity. KEY POINTS: Episodic breathing and chronic intermittent hypoxia (CIH) are associated with autonomic dysregulation, including elevated sympathetic nervous system activity. Altered nucleus tractus solitarii (nTS) activity contributes to this response. Neurons originating in the paraventricular nucleus (PVN), including those containing oxytocin (OT) and corticotropin-releasing hormone (CRH), project to the nTS, and modulate the cardiorespiratory system. Their role in CIH is unknown. In this study, we focused on OT and CRH individually and together on nTS activity from rats exposed to either CIH or normoxia control. We show that after CIH, CRH alone and with OT increased to a greater extent overall nTS discharge, neuronal calcium influx, synaptic transmission to second-order nTS neurons, and OT and CRH receptor expression. These results provide insights into the underlying circuits and mechanisms contributing to autonomic dysfunction during periods of episodic breathing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号