Soil amendment

土壤改良剂
  • 文章类型: Journal Article
    作为制药行业的副产品,抗生素发酵残渣有望在有效去除抗生素后得到利用。然而,发酵残渣施用对土壤的影响评价,特别是原位环境后果,不仅考虑了抗生素抗性基因(ARG)的丰度,而且还考虑了耐药性风险,仍然没有得到充分的评估。在这里,研究了红霉素发酵残渣(EFR)对大豆种植土壤抗性和风险评分的影响。每hm2土壤施用3750kg(EFR250)和7500kg(EFR500)的处理EFR并没有增加多样性(香农指数,与对照相比,土壤抗性组的2.84-3.38)或相对丰度(0.086-0.142拷贝/16SrRNA基因)(CK:2.92-3.2,0.088-0.096拷贝/16SrRNA基因)。通过宏基因组组装计算的土壤抗性风险评分,显示ARGs的传播潜力,范围为22.9至25.0,并且在处理的EFR改良土壤和对照之间也没有显着差异。值得注意的是,抗性组的多样性在发芽阶段增加(Mann-WhitneyU检验,P<0.05)和某些ARG类型的丰度(大环内酯-lincosamide-链脲酶,氨基糖苷和四环素,等。)沿着大豆生长的过程移动(Kruskal-Wallis检验,P<0.05)。结构方程模型分析表明,大豆生育期通过影响微生物群落,这得到了Procrustes分析(P<0.05)和宏基因组分级的进一步支持。我们的发现强调,在研究剂量下一次性施用处理过的EFR期间,土壤ARG丰度和抗性风险并未增加。在进一步评估发酵残渣应用时,还应综合考虑耐药性风险和多种影响因素。
    As a by-product in the pharmaceutical industry, antibiotic fermentation residue is expected to be able to be utilized after effectively removing the antibiotics. However, evaluation of the effect of fermentation residue application on soil, especially the in situ environmental consequences considering not only the antibiotic resistance gene (ARG) abundance but also the resistome risk, has still not been sufficiently evaluated. Herein, the impact of treated erythromycin fermentation residue (EFR) on the resistome and risk score in soybean planting soil was investigated. Treated EFR application with dosages of 3750 kg (EFR250) and 7500 kg (EFR500) per hm2 soil did not increase the diversity (Shannon index, 2.84-3.38) or relative abundance (0.086-0.142 copies/16S rRNA gene) of the soil resistome compared with the Control (CK: 2.92-3.2, 0.088-0.096 copies/16S rRNA gene). Soil resistome risk scores calculated by metagenomic assembly, showing the dissemination potential of ARGs, ranged from 22.9 to 25.0, and were also not significantly different between treated EFR amended soil and the Control. Notably, the diversity of the resistome increased at the sprout stage (Mann-Whitney U test, P < 0.05) and the abundance of some ARG types (macrolide-lincosamide-streptogramin, aminoglycoside and tetracycline, etc.) shifted along the course of soybean growth (Kruskal-Wallis test, P < 0.05). Structural equation model analysis showed that the soybean growth period affected the composition of ARGs by affecting the microbial community, which was further supported by Procrustes analysis (P < 0.05) and metagenomic binning. Our findings emphasized that soil ARG abundance and resistome risk did not increase during one-time field application of treated EFR at the studied dosage. Comprehensive consideration including resistome risk and multiple influencing factors also should be given for further assessment of fermentation residue application.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Biomass ashes are potential soil amendments that reduce soil acidity and provide plant nutrients, but trace elements in ash may be leached from the solid phase, thereby posing environmental concerns. We determined the leachability of selected major elements, trace elements and anions from wood derived bottom ash generated from an updraft gasifier as influenced by ash pretreatments and the presence of soil via serial aqueous batch extraction. We found that self-hardening reduced initial solubility and reactivity of ash (i.e. lowered electrical conductivity), and reduced initial aqueous concentrations of Ba, Ca, Cu, Fe, Hg, Pb, Sr and Zn. But, hardening of ash increased initial aqueous concentrations of B, Cr, P, Se and SO42-. Although mixing ash into soil (5% ash by mass) generally decreased the mobility of most constituents, aqueous concentrations of P and As were increased relative to that of either ash-alone or soil-alone treatments. Overall, extract concentrations of constituents in various treatments were relatively low. Results of this serial batch extraction support the use of clean wood-derived bottom ash as a safe and environmentally suitable soil amendment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Carbon dioxide (CO2) is a major greenhouse gas, and its concentration in the atmosphere is increasing continuously, hence there is an urgent need to reduce its level in the atmosphere. Soils offer a large natural sink to store CO2. This study focuses on sequestering CO2 in the agricultural soils as inorganic carbon, which can be accomplished by adding alkaline-earth silicates. Wollastonite is used in this study as a soil amendment, to sequester CO2 via the geochemical route of mineral carbonation. The first objective of the present study was to evaluate the effect of mixing a wide range of dosages of wollastonite, as a soil amendment, on the growth performance of two leguminous plants frequently used in agricultural sector: soybean and alfalfa. The plants were grown with different wollastonite dosages (3-20 kg·m-2 for soybean and 3-40 kg·m-2 for alfalfa), for a duration of 14 weeks in a microplot experiment in Ontario, Canada. The second objective was to find evidence of enhanced weathering of wollastonite in soil, in addition to the augmentation of inorganic carbon content in soil. For this, mineralogical assessment of the soils was performed using XRD and SEM-EDS analyses. Wollastonite increased the soybean yield by two-fold in the plot amended with 10 kg·m-2. At all dosages, wollastonite increased the alfalfa growth in terms of height and above-ground biomass dry weight, as well as root biomass. The rate of CO2 sequestration, at optimum wollastonite dosage, reached 0.08 kg CO2·m-2·month-1. XRD and SEM-EDS analyses indicated accumulation of calcite in wollastonite-amended soil and formation of other weathering products. The results obtained from this study help to understand the impact of wollastonite soil amendment on agronomy, and will aid in implementing such negative emissions technology by informing farmers and industry alike that the use of wollastonite contributes toward global climate change mitigation while supporting crop yield. The findings of this study add to the existing body of knowledge on enhanced weathering as an atmospheric CO2 removal technology, providing further evidence that wollastonite weathering in agricultural soils can lead to significant capacity for CO2 sequestration as inorganic carbon, while concurrently promoting plant growth.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Physicochemical properties of biochar, which are used as a soil amendment material in agricultural fields, are different depending on biomass feedstock and pyrolysis processes. In this study, we evaluated the influence of feedstock type and pyrolysis temperature on the water-retention related properties of biochar. Wood-chips [cedar (CE) and cypress (CY)]; moso bamboo (MB); rice husk (RH); sugarcane bagasse (SB); poultry manure (PM) and agricultural wastewater sludge (WS) were each pyrolysed at 400, 600 and 800 °C with a retention time of two hours. Scanning electron microscopy micrographs (SEM), hydrophobicity indices, pore-size distribution measured by mercury-intrusion porosimetry, water-retention curves (WRCs) and plant-available water capacities (AWCs) of the biochars were measured to evaluate their potentials as soil-amendment materials for improving soils\' water-retention. As the pyrolysis temperature was increased, the hydrophobicity index decreased. On the other hand, pyrolysis temperature did not affect the distribution of micrometre-range pores, which are useful for plant-available water, of biochars. The AWCs of the biochars formed from CE, CY and SB were greater than those produced from other feedstocks, at 600 and 800 °C. Therefore, we can suggest that the biochars derived from wood-chips (CE and CY) and SB have greater potential for enhancing soils\' water-retention.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    For the present study, soil samples of four artificially-induced salinity gradients (S0: control, S1: 2.0, S2: 4.0, S3: 6.0 ECiw) was incubated with fine-textured peanut shell biochar at various ratios (B0: control, B1: 2.5%, B2: 5.0%, B3: 10% w/w) for 30 days. At 1, 3, 7, 15, 30 days of incubation, samples were analyzed for soil carbon and selected enzyme activities. Results showed that biochar could increase soil organic carbon on application of highest rate of biochar addition (B3), hence potentially restored the saline soils by less C mineralization, and more sequestration of soil C. However, soil enzyme activities were biochar rate(s), day(s) of incubation and enzyme dependent. The lowest rate of biochar addition (B1) showed highest dehydrogenase (20.5 μg TPF g(-1) soil h(-1)), acid phosphatase (29.1 μg PNP g(-1) soil h(-1)) and alkaline phosphatase (16.1 μg PNP g(-1) soil h(-1)) whereas the higher rate (B2) increased the urease (5.51 μg urea-N g(-1) soil h(-1)) and fluorescein diacetate hydrolyzing activities (3.95 μg fluorescein g(-1) OD soil h(-1)) in soil. All the positive changes persisted at higher levels of salinity (S2, S3) suggesting biochar-amended soil may be potential for better nutrient cycling. Soil enzymes were found to be correlated with soil carbon and with each other while principal component analysis (PCA) extracted the most sensitive parameters as the acid and alkaline phosphatases and urease activities in the present experimental condition. This is the first time report of examining soil microbial environment using peanut shell biochar under a degraded (saline) soil.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Small-arm shooting ranges often receive a significant input of lead (Pb), copper (Cu) and antimony (Sb) from ammunition. The goal of the present study was to investigate the mobility, distribution and speciation of Pb and Sb pollution under field conditions in both untreated and sorbent-amended shooting range soil. Elevated Sb (19-349μgL(-1)) and Pb (7-1495μgPbL(-1)) concentrations in the porewater of untreated soil over the four-year test period indicated a long-term Sb and Pb source to the adjacent environment in the absence of remedial measures. Mixing ferric oxyhydroxide powder (CFH-12) (2%) together with limestone (1%) into the soil resulted in an average decrease of Sb and Pb porewater concentrations of 66% and 97%, respectively. A similar reduction was achieved by adding 2% zerovalent iron (Fe°) to the soil. The remediation effect was stable over the four-year experimental period indicating no remobilization. Water- and 1M NH4NO3-extractable levels of Sb and Pb in field soil samples indicated significant immobilization by both treatments (89-90% for Sb and 89-99% for Pb). Results from sequential extraction analysis indicate fixation of Sb and Pb in less accessible fractions like amorphous iron oxides or even more crystalline and residual mineral phases, respectively. This work shows that amendment with Fe-based sorbents can be an effective method to reduce the mobility of metals both in cationic and anionic form in polluted shooting range soil.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号