Shaw Potassium Channels

Shaw 钾通道
  • 文章类型: Clinical Trial, Phase II
    AUT00063 is an experimental new medicine that has been demonstrated to suppress spontaneous hyperactivity by modulating the action of voltage-gated potassium-channels in central auditory cortical neurons of a rodent model. This neurobiological property makes it a good candidate for treating the central component of subjective tinnitus but this has not yet been tested in humans. The main purpose of the QUIET-1 (QUest In Eliminating Tinnitus) trial was to examine the effect of AUT00063 on the severity of tinnitus symptoms in people with subjective tinnitus. The trial was a randomised, placebo-controlled, observer, physician and participant blinded multi-centre superiority trial with two parallel groups and a primary endpoint of functional impact on tinnitus 28 days after the first drug dosing day. The trial design overcame the scale and logistical challenges of delivering a scientifically robust, statistically powered multi-centre study for subjective tinnitus within the National Health Service in England. The trial was terminated early for futility. Overall, 212 participants consented across 18 sites with 91 participants randomised to groups using age, gender, tinnitus symptom severity and hearing status as minimisation factors. While the pharmacokinetic markers confirm the uptake of AUT00063 in the body, within the expected therapeutic range, with respect to clinical benefit findings indicated that AUT00063 was not effective in alleviating tinnitus symptoms (1.56 point change in Tinnitus Functional Index). In terms of clinical harms, results indicated that a daily dose of 800 mg capsules of AUT00063 taken for 28 days was safe and well tolerated. These findings provide significant advances in the drug development field for hearing sciences, but raise questions about the predictive validity of certain rodent models of noise-induced hearing loss and tinnitus, as least for the mechanism evaluated in the present study. Trial Registration: (EudraCT) 2014-002179-27; NCT02315508.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Clinical Trial
    Obesity is a major risk factor for type 2 diabetes. To unravel the genetic determinants of obesity-associated diabetes, we performed a genome-wide study using the 1,000 Genomes-based imputation in a Korean childhood cohort (KoCAS-1, n = 484) and carried out de novo replication in an independent population (KoCAS-2, n = 1,548). A novel variant (rs10879834) with multiple diverse associations for obesity-related traits was also found to be replicated in an adult cohort (KARE, n = 8,842). Functional annotations using integrative epigenetic analyses identified biological significance and regulatory effects with an inverse methylation-expression correlation (cg27154343 in the 5\'-UTR of the KCNC2 gene), tissue-specific enhancer mark (H3K4me1), and pathway enrichment (insulin signaling). Further functional studies in cellular and mouse models demonstrated that KCNC2 is associated with anti-obesogenic effects in the regulation of obesity-induced insulin resistance. KCNC2 shRNA transfection induced endoplasmic reticulum (ER) stress and hepatic gluconeogenesis. Overproduction of KCNC2 decreased ER stress, and treatment with metformin enhanced KCNC2 expression. Taken together, these data suggest that reduction of KCNC2 is associated with modified hepatic gluconeogenesis and increased ER stress on obesity-mediated diabetic risk. An integrative multi-omics analysis might reveal new functional and clinical implications related to the control of energy and metabolic homeostasis in humans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Herein, we report the synthesis and mass spectrometry studies of several N-alkylbenzenesulfonamides structurally related to sulfanilic acid. The compounds were synthesized using a modified Schotten-Baumann reaction coupled with Meisenheimer arylation. Sequential mass spectrometry by negative mode electrospray ionization (ESI(-)-MS/MS) showed the formation of sulfoxylate anion (m/z 65) observed in the mass spectrum of p-chloro-N-alkylbenzenesulfonamides. Investigation of the unexpected loss of two water molecules, as observed by electron ionization mass spectrometry (EI-MS) analysis of p-(N-alkyl)lactam sulfonamides, led to the proposal of corresponding fragmentation pathways. These compounds showed loss of neutral iminosulfane dioxide molecule (M-79) with formation of ions observed at m/z 344 and 377. These ions were formed by rearrangement on ESI(+)-MS/MS analysis. Some of the molecules showed antagonistic activity against Kv3.1 voltage-gated potassium channels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • DOI:
    文章类型: Journal Article
    Diclofenac (DIC), a nonsteroidal anti-inflammatory drug, is known to exert anti-nociceptive and anti-convulsant actions; however, its effects on ion currents, in neurons remain debatable. We aimed to investigate (1) potential effects of diclofenac on membrane potential and potassium currents in differentiated NSC-34 neuronal cells and dorsal root ganglion (DRG) neurons with whole-cell patch-clamp technology, and (2) firing of action potentials (APs), using a simulation model from hippocampal CA1 pyramidal neurons based on diclofenac\'s effects on potassium currents. In the NSC-34 cells, diclofenac exerted an inhibitory effect on delayed-rectifier K⁺ current (I(KDR)) with an IC₅₀ value of 73 μM. Diclofenac not merely inhibited the I(KDR) amplitude in response to membrane depolarization, but also accelerated the process of current inactivation. The inhibition by diclofenac of IK(DR) was not reversed by subsequent application of either naloxone. Importantly, diclofenac (300 μM) increased the amplitude of M-type K⁺ current (I)(KM)), while flupirtine (10 μM) or meclofenamic acid (10 μM) enhanced it effectively. Consistently, diclofenac (100 μM) increased the amplitude of I(KM) and diminished the I(KDR) amplitude, with a shortening of inactivation time constant in DRG neurons. Furthermore, by using the simulation modeling, we demonstrated the potential electrophysiological mechanisms underlying changes in AP firing caused by diclofenac. During the exposure to diclofenac, the actions on both I(KM) and I(KDR) could be potential mechanism through which it influences the excitability of fast-spiking neurons. Caution needs to be made in attributing the effects of diclofenac primarily to those produced by the activation of I(KM).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    We recently identified KCNC3, encoding the Kv3.3 voltage-gated potassium channel, as the gene mutated in SCA13. One g.10684G>A (p.Arg420His) mutation caused late-onset ataxia resulting in a nonfunctional channel subunit with dominant-negative properties. A French early-onset pedigree with mild mental retardation segregated a g.10767T>C (p.Phe448Leu) mutation. This mutation changed the relative stability of the channel\'s open conformation. Coding exons were amplified and sequenced in 260 autosomal-dominant ataxia index cases of European descent. Functional analyses were performed using expression in Xenopus oocytes. The previously identified p.Arg420His mutation occurred in three families with late-onset ataxia. A novel mutation g.10693G>A (p.Arg423His) was identified in two families with early-onset. In one pedigree, a novel g.10522G>A (p.Arg366His) sequence variant was seen in one index case but did not segregate with affected status in the respective family. In a heterologous expression system, the p.Arg423His mutation exhibited dominant-negative properties. The p.Arg420His mutation, which results in a nonfunctional channel subunit, was recurrent and associated with late-onset progressive ataxia. In two families the p.Arg423His mutation was associated with early-onset slow-progressive ataxia. Despite a phenotype reminiscent of the p.Phe448Leu mutation, segregating in a large early-onset French pedigree, the p.Arg423His mutation resulted in a nonfunctional subunit with a strong dominant-negative effect.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号