SNARE proteins

SNARE 蛋白质类
  • 文章类型: Journal Article
    Eukaryotic cells share a set of secretory pathways for the flux of membrane and protein material. In 1993, ideas about the functioning of three major proteins of the neurosecretory complex were consolidated in the SNARE hypothesis, which proposed that the interaction of these proteins provides both the specificity for vesicle targeting and the molecular machinery for fusion between vesicle and target membranes. Subsequetly, the organization, molecular mechanics and control of vesicle trafficking have become topics of intense research, and the hypothesis has evolved to accommodate new discoveries from the analysis of secretion in yeast and mammals. It is likely to be challenged again as more information comes to light about secretory processes in plants. New tools for measuring and manipulating vesicle traffic and secretion are now being used, drawing on in vivo fluorescence and capacitance recording as well as genetic engineering. These new technologies have already begun to yield details wholly unexpected from past studies. Here we focus on recent findings relating to the mechanisms of vesicle trafficking and the background to these developments, highlighting both current understanding of the molecular events of secretion and the gaps therein, as well as discussing emerging themes from work with plants. contents Summary 389 I. introduction 389 II. 1. The SNARE hypothesis 393 III. vesicle trafficking in plants 402 IV. regulation of vesicle trafficking in plant cells 406 V. conclusion 410 Acknowledgements 411 References 411.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    To review the literature on the mechanism of action of onabotulinumtoxinA in chronic migraine.
    OnabotulinumtoxinA is a chronic migraine preventive treatment that significantly reduces headache frequency. The traditional mechanism described for onabotulinumtoxinA - reducing muscle contractions - is insufficient to explain its efficacy in migraine, which is primarily a sensory neurological disease.
    A narrative literature review on the mechanism of action of onabotulinumtoxinA in chronic migraine.
    Following injection into tissues, onabotulinumtoxinA inhibits soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE)-mediated vesicle trafficking by cleaving one of its essential proteins, soluble N-ethylmaleimide-sensitive fusion attachment protein (SNAP-25), which occurs in both motor and sensory nerves. OnabotulinumtoxinA inhibits regulated exocytosis of motor and sensory neurochemicals and proteins, as well as membrane insertion of peripheral receptors that convey pain from the periphery to the brain, because both processes are SNARE dependent. OnabotulinumtoxinA can decrease exocytosis of pro-inflammatory and excitatory neurotransmitters and neuropeptides such as substance P, calcitonin gene-related peptide, and glutamate from primary afferent fibers that transmit nociceptive pain and participate in the development of peripheral and central sensitization. OnabotulinumtoxinA also decreases the insertion of pain-sensitive ion channels such as transient receptor potential cation channel subfamily V member 1 (TRPV1) into the membranes of nociceptive neurons; this is likely enhanced in the sensitized neuron. For chronic migraine prevention, onabotulinumtoxinA is injected into 31-39 sites in 7 muscles of the head and neck. Sensory nerve endings of neurons whose cell bodies are located in trigeminal and cervical ganglia are distributed throughout the injected muscles, and are overactive in people with migraine. Through inhibition of these sensory nerve endings, onabotulinumtoxinA reduces the number of pain signals that reach the brain and consequently prevents activation and sensitization of central neurons postulated to be involved in migraine chronification.
    OnabotulinumtoxinA likely acts via sensory mechanisms to treat chronic migraine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Congenital myasthenic syndromes (CMS) are heterogeneous genetic diseases in which neuromuscular transmission is compromised. CMS resembling the Lambert-Eaton myasthenic syndrome (CMS-LEMS) are emerging as a rare group of distinct presynaptic CMS that share the same electrophysiological features. They have low compound muscular action potential amplitude that increment after brief exercise (facilitation) or high-frequency repetitive nerve stimulation. Although clinical signs similar to LEMS can be present, the main hallmark is the electrophysiological findings, which are identical to autoimmune LEMS. CMS-LEMS occurs due to deficits in acetylcholine vesicle release caused by dysfunction of different components in its pathway. To date, the genes that have been associated with CMS-LEMS are AGRN, SYT2, MUNC13-1, VAMP1, and LAMA5. Clinicians should keep in mind these newest subtypes of CMS-LEMS to achieve the correct diagnosis and therapy. We believe that CMS-LEMS must be included as an important diagnostic clue to genetic investigation in the diagnostic algorithms to CMS. We briefly review the main features of CMS-LEMS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    N-ethylmaleimide sensitive factor (NSF) is a key protein of intracellular membrane traffic. NSF is a highly conserved protein belonging to the ATPases associated with other activities (AAA+ proteins). AAA+ share common domains and all transduce ATP hydrolysis into major conformational movements that are used to carry out conformational work on client proteins. Together with its cofactor SNAP, NSF is specialized on disassembling highly stable SNARE complexes that form after each membrane fusion event. Although essential for all eukaryotic cells, however, the details of this reaction have long been enigmatic. Recently, major progress has been made in both elucidating the structure of NSF/SNARE complexes and in understanding the reaction mechanism. Advances in both cryo EM and single molecule measurements suggest that NSF, together with its cofactor SNAP, imposes a tight grip on the SNARE complex. After ATP hydrolysis and phosphate release, it then builds up mechanical tension that is ultimately used to rip apart the SNAREs in a single burst. Because the AAA domains are extremely well-conserved, the molecular mechanism elucidated for NSF is presumably shared by many other AAA+ ATPases. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 518-531, 2016.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The most difficult component in our understanding of human autoimmunity remains a rigorous dissection of etiological events. Indeed, the vast literature on autoimmune diseases focuses on the inflammatory response, with the hope of developing drugs that reduce inflammation. However, there is increasing recognition that understanding the immunobiology of target tissues will also have direct relevance to disease natural history, including breach of tolerance. Sjögren\'s syndrome is essentially an epitheliitis and there are major changes to normal architectural salivary organization. We propose that loss of homeostasis is the initial event that precipitates inflammation and that such inflammatory response includes not only the adaptive response, but also an intense innate immune/bystander response. To understand these events this review focuses on the architecture, phenotype, function and epithelial cell organization. We further submit that there are several critical issues that must be defined to fully understand epithelial cell immunobiology in Sjögren\'s syndrome, including defining epithelial cell polarity, cell-cell and cell to extracellular matrix interactions and a variety of chemical and mechanical signals. We also argue that disruption of tight junctions induces disorganization of the apical pole of salivary acinar cells in Sjögren\'s syndrome. In addition, there will be a critical role of inflammatory cytokines in the apico-basal relocation of tight junction proteins. Further, the altered disorganization and relocation of proteins that participate in secretory granule formation are also dysregulated in Sjögren\'s syndrome and will contribute to abnormalities of mucins within the extracellular matrix. Our ability to understand Sjögren\'s syndrome and develop viable therapeutic options will depend on defining these events of epithelial cell biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The paradigm for soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) function in mammalian cells has been built on advancements in our understanding of structural and biochemical aspects of synaptic vesicle exocytosis, involving specifically synaptobrevin, syntaxin 1 and SNAP25. Interestingly, a good number of SNAREs which are not directly involved in neurotransmitter exocytosis, are either brain-enriched or have distinct neuron-specific functions. Syntaxins 12/13 regulates glutamate receptor recycling via its interaction with neuron-enriched endosomal protein of 21 kDa (NEEP21). TI-VAMP/VAMP7 is essential for neuronal morphogenesis and mediates the vesicular transport processes underlying neurite outgrowth. Ykt6 is highly enriched in the cerebral cortex and hippocampus and is targeted to a novel compartment in neurons. Syntaxin 16 has a moderate expression level in many tissues, but is rather enriched in the brain. Here, we review and discuss the neuron-specific physiology and possible pathology of these and other (such as SNAP-29 and Vti1a-beta) members of the SNARE family.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The pairing of cognate v- and t-SNAREs between two opposing lipid bilayers drives spontaneous membrane fusion and confers specificity to intracellular membrane trafficking. These fusion events are regulated by a cascade of protein-protein interactions that locally control SNARE activity and complex assembly, determining when and where fusion occurs with high efficiency in vivo. This basic regulation occurs at all transport steps and is mediated by conserved protein families such as Rab proteins and their effectors and Sec1/unc18 proteins. Regulated exocytosis employs auxiliary components that couple the signal (which triggers exocytosis) to the fusion machinery. At the neuronal synapse, munc13 as well as munc18 control SNARE complex assembly. Synaptotagmin and complexin ensure fast synchronous calcium-evoked neurotransmitter release.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • DOI:
    文章类型: Journal Article
    Signal transfer between neurons and between neurons and muscle cells is mediated by the secretion of neurotransmitters. The axon of the presynaptic cell contains synaptic vesicles, the storage organelles for neurotransmitters. Arrival of an action potential causes calcium-influx into the axon and leads to fusion of synaptic vesicles with the presynaptic plasma membrane. Recently, the events between calcium-influx and membrane fusion were elucidated on a molecular level. The family of SNARE-proteins was identified as the key players in neurosecretion. They are located on synaptic vesicles (VAMP) or on the presynaptic plasma membrane (syntaxin, SNAP-25). Intimate protein-protein interactions between the SNARE-proteins are responsible for the attachment and merger of vesicle and the plasma membrane. Fusion is triggered by calcium-binding to synaptotagmin, another protein recently identified on synaptic vesicles. The molecular mechanism of the action of clostridial neurotoxins was also elucidated. Botulinum-as well as Tetanus toxins are proteases which cleave neuronal SNARE-proteins. This explains the long known inhibition of neurosecretion caused by these toxins. The proteolytic action of Tetanus- and Botulinum toxin occurs in different types of neurons, resulting in a stimulatory or inhibitory effect on muscle cells. This selective degradation of SNAREs explains the opposing clinical signs of tetanus (cramps) and botulismus (paralysis).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号