关键词: AAA+ NSF SNARE single molecule α-SNAP

Mesh : Adenosine Triphosphate / chemistry metabolism Animals Cryoelectron Microscopy Humans Hydrolysis Multiprotein Complexes / chemistry metabolism ultrastructure N-Ethylmaleimide-Sensitive Proteins / chemistry metabolism Protein Domains SNARE Proteins / chemistry metabolism

来  源:   DOI:10.1002/bip.22854   PDF(Sci-hub)

Abstract:
N-ethylmaleimide sensitive factor (NSF) is a key protein of intracellular membrane traffic. NSF is a highly conserved protein belonging to the ATPases associated with other activities (AAA+ proteins). AAA+ share common domains and all transduce ATP hydrolysis into major conformational movements that are used to carry out conformational work on client proteins. Together with its cofactor SNAP, NSF is specialized on disassembling highly stable SNARE complexes that form after each membrane fusion event. Although essential for all eukaryotic cells, however, the details of this reaction have long been enigmatic. Recently, major progress has been made in both elucidating the structure of NSF/SNARE complexes and in understanding the reaction mechanism. Advances in both cryo EM and single molecule measurements suggest that NSF, together with its cofactor SNAP, imposes a tight grip on the SNARE complex. After ATP hydrolysis and phosphate release, it then builds up mechanical tension that is ultimately used to rip apart the SNAREs in a single burst. Because the AAA domains are extremely well-conserved, the molecular mechanism elucidated for NSF is presumably shared by many other AAA+ ATPases. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 518-531, 2016.
摘要:
暂无翻译
公众号