RNA, Small Untranslated

RNA,小的未翻译
  • 文章类型: Journal Article
    CRISPR(成簇的规则间隔的短回文重复)/Cas(CRISPR相关)技术是一种通用的基因组编辑工具,已用于改善农业上重要的植物性状。由于其精确性,CRISPR/Cas9比传统植物育种方法或标准基因工程方法更有效地快速开发适应气候变化的新品种。除了在组织培养为基础的植物转化的知识,有效的基因特异性单指导RNA(sgRNA)设计,预测其离靶效应和矢量利用率,promotors,CRISPR/Cas9需要Cas蛋白和终止子。各种生物信息学工具可用于最佳sgRNA设计和脱靶筛选。各种工具用于将CRISPR/Cas组分递送到细胞和基因组中。此外,最近的一些研究证明,通过使用多靶sgRNA设计,同一家族中的不同旁系同源物或在同一途径中工作的几个基因同时沉默。这篇综述总结了发起人的类型,Cas蛋白质,识别序列,和可用于开发敲除和过表达植物品系的终止子。它还提供了从sgRNA的设计到非转基因基因组编辑的T2代的选择的基因组编辑的植物的开发的一般指南。
    CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) technology is a versatile genome editing tool that has been used to improve agriculturally important plant traits. Due to its precision, CRISPR/Cas9 is more effective than either conventional plant breeding methods or standard genetic engineering approaches for the rapid development of new varieties resilient to climate change. In addition to knowledge in tissue culture-based plant transformation, effective gene-specific single guide RNA (sgRNA) design, prediction of its off-target effect and utilization of vectors, promoters, Cas proteins and terminators is required for CRISPR/Cas9. Various bioinformatics tools are available for the best sgRNA design and screening of the off-targets. Various tools are used in the delivery of CRISPR/Cas components into cells and the genome. Moreover, some recent studies proved the simultaneous silencing of different paralogs in the same family or several genes working in the same pathway by using multiple-target sgRNA designs. This review summarizes the type of promoters, Cas proteins, recognition sequences, and terminators available for the development of knock-out and overexpression plant lines. It also provides a general guideline for the development of genome-edited plants from the design of sgRNAs to the selection of non-transgenic genome-edited T2 generation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    到目前为止,每个测序的细菌转录组包含数百个小的调控非编码RNA(sRNA)。从那些已经被表征的sRNA中,我们了解到它们的调节功能可以跨越几乎每个细菌过程,主要作用于基因表达的转录后控制(Wagner和Romby,AdvGenet90:133-208,2015)。已经描述了sRNA作用的典型分子机制依赖于RNA分子的序列和/或结构性状。至于蛋白质编码基因,物种之间sRNA的保守性表明在进化过程中保守和调整的功能。了解sRNA基因的系统发育分布及其功能性状如何进化可能有助于全面了解其在每个物种中的生物学作用。这里,我们提出了一个简单的计算工作流程来识别存在于测序的细菌基因组中的近距离和远距离的sRNA同源物,这允许定义新的sRNA家族。该策略基于协方差模型(CM)的使用,并假定整个进化过程中功能sRNA基因的序列和结构保守。此外,通过仔细检查RNA家族每个成员的紧密基因组背景的保守性,以及微合成模式如何遵循物种进化的路径,可以定义sRNA直系同源物的亚群,这反过来又使RNA亚家族的定义。
    So far, every sequenced bacterial transcriptome encompasses hundreds of small regulatory noncoding RNAs (sRNAs). From those sRNAs that have been already characterized, we learned that their regulatory functions could span over almost every bacterial process, mostly acting at the posttranscriptional control of gene expression (Wagner and Romby, Adv Genet 90:133-208, 2015). Canonical molecular mechanisms of sRNA action have been described to rely on both sequence and/or structural traits of the RNA molecule. As for protein-coding genes, the conservation of sRNAs among species suggests conserved and adjusted functions across evolution. Knowing the phylogenetic distribution of an sRNA gene and how its functional traits have evolved may help to get a broad picture of its biological role in each single species. Here, we present a simple computational workflow to identify close and distant sRNA homologs present in sequenced bacterial genomes, which allows defining novel sRNA families. This strategy is based on the use of Covariance Models (CM) and assumes the conservation of sequence and structure of functional sRNA genes throughout evolution. Moreover, by carefully inspecting the conservation of the close genomic context of every member of the RNA family and how the patterns of microsynteny follow the path of species evolution, it is possible to define subgroups of sRNA orthologs, which in turn enables the definition of RNA subfamilies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在大多数真核生物中,小RNA(sRNA)分子,如miRNA,siRNA和piRNA调节基因表达并抑制转座子和病毒。AGO/PIWI家族蛋白根据大小对功能sRNA进行排序,5'-核苷酸和其他序列特征。在植物和一些动物中,病毒sRNAs极其多样,覆盖整个病毒基因组序列,通过病毒sRNA的深度测序和生物信息学分析,可以从头重建完整的病毒基因组。以前,我们已经开发了一个工具MISIS来查看和分析病毒和细胞基因组区域的sRNA图谱,产生多个sRNA。在这里,我们描述了MISIS的新版本,MISIS-2,它能够确定和可视化共有序列,并对任何选定大小和5'末端核苷酸身份的sRNA进行计数。此外,我们证明了MISIS-2用于鉴定参考序列每个位置的单核苷酸多态性(SNP)以及在进化的病毒准种中重建共有主基因组的实用性。MISIS-2是一个Java独立的程序。它与源代码一起在网站http://www上免费提供。fasteris.com/apps.
    In most eukaryotes, small RNA (sRNA) molecules such as miRNAs, siRNAs and piRNAs regulate gene expression and repress transposons and viruses. AGO/PIWI family proteins sort functional sRNAs based on size, 5\'-nucleotide and other sequence features. In plants and some animals, viral sRNAs are extremely diverse and cover the entire viral genome sequences, which allows for de novo reconstruction of a complete viral genome by deep sequencing and bioinformatics analysis of viral sRNAs. Previously, we have developed a tool MISIS to view and analyze sRNA maps of viruses and cellular genome regions which spawn multiple sRNAs. Here we describe a new release of MISIS, MISIS-2, which enables to determine and visualize a consensus sequence and count sRNAs of any chosen sizes and 5\'-terminal nucleotide identities. Furthermore we demonstrate the utility of MISIS-2 for identification of single nucleotide polymorphisms (SNPs) at each position of a reference sequence and reconstruction of a consensus master genome in evolving viral quasispecies. MISIS-2 is a Java standalone program. It is freely available along with the source code at the website http://www.fasteris.com/apps.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号