Photocatalyst

光催化剂
  • 文章类型: Journal Article
    全氟烷基和多氟烷基物质(PFAS)是工业废水中普遍存在的氟化和难降解污染物。用诸如TiO2和ZnO的催化剂光催化破坏这些污染物是去除PFAS的有吸引力的途径。但是这种光催化剂的精制形式是昂贵的。这项研究,第一次,利用研磨未精炼的原始矿物钛铁矿,结合UV-C辐射实现两种模型PFAS化合物全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)的矿化。使用实验室规模的光催化反应器系统获得的结果表明,在环境相关浓度(200-1000ppb)下,PFAS化合物的快速去除动力学(在不到10小时内去除>90%)。原始钛铁矿在PFAS的三个连续降解周期中重复使用,保留>80%的去除效率。降解产物的分析表明脱氟和初始样品中存在短链PFAS中间体。最终样品表明短链PFAS中间体消失,氟离子进一步积累,表明原始PFAS化合物由于钛铁矿中存在的TiO2和紫外线照射引起的基于氧自由基的光催化破坏机制而发生矿化。这项研究的结果表明,与UV-C耦合的原始钛铁矿适用于具有成本效益的反应器操作和PFAS化合物的有效光催化破坏。
    Per- and polyfluoroalkyl substances (PFAS) are fluorinated and refractory pollutants that are ubiquitous in industrial wastewater. Photocatalytic destruction of such pollutants with catalysts such as TiO2 and ZnO is an attractive avenue for removal of PFAS, but refined forms of such photocatalysts are expensive. This study, for the first time, utilized milled unrefined raw mineral ilmenite, coupled to UV-C irradiation to achieve mineralization of the two model PFAS compounds perfluorooctanoic acid (PFOA) and perfluoro octane sulfonic acid (PFOS). Results obtained using a bench-scale photocatalytic reactor system demonstrated rapid removal kinetics of PFAS compounds (>90% removal in less than 10 h) in environmentally-relevant concentrations (200-1000 ppb). Raw ilmenite was reused over three consecutive degradation cycles of PFAS, retaining >80% removal efficiency. Analysis of degradation products indicated defluorination and the presence of shorter-chain PFAS intermediates in the initial samples. End samples indicated the disappearance of short-chain PFAS intermediates and further accumulation of fluoride ions, suggesting that original PFAS compounds underwent mineralization due to an oxygen-radical-based photocatalytic destruction mechanism induced by TiO2 present in ilmenite and UV irradiation. The outcome of this study implies that raw ilmenite coupled to UV-C is suitable for cost-effective reactor operation and efficient photocatalytic destruction of PFAS compounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    有机磷农药造成的环境污染(例如,三唑磷)是一个不断升级的担忧。为了缓解这个问题,介绍了一种新型Al6Si2O13/WO2.72(ASO/WO)纳米复合光催化剂,显着增强了三唑磷的光催化降解。优化的纳米复合材料具有60.0%ASO负载(60-ASO/WO),在140.0min内对三唑磷的降解率为86.3%,略高于60-ASO/WO3(72.6%),显著优于单个ASO(65.0%),WO(59.5%),和WO3(56.2%)。该催化剂在5次循环后保持88.9%的活性,展示卓越的效率和稳定性。此外,其电化学表面积(ECSA,310.0cm2),总有机碳(TOC,去除率为73.7%),光电流,和电化学阻抗都是最佳的。X射线光电子能谱(XPS),电子顺磁共振(EPR),和理论计算阐明了氧空位和S方案异质结在增强电荷分离和光催化性能中的关键作用,证实了氧缺陷和S方案的协同作用。虽然个别因素可以提高光催化活性,它们的组合导致更明显的效果。液相色谱-质谱(LCMS)确定了主要的降解中间体,包括1-苯基-3-羟基-1,2,4-三唑,硫代磷酸二乙酯,和3,5,6-三氯-2-吡啶,强调材料在环境修复中的潜力。
    The environmental contamination caused by organophosphorus pesticides (for example, triazophos) is an escalating concern. To mitigate this issue, this study introduces a novel Al6Si2O13/WO2.72 (ASO/WO) nanocomposite photocatalyst, which markedly enhances the photocatalytic degradation of triazophos. The optimized nanocomposite material with a 60.0 % ASO loading (60-ASO/WO) achieves a degradation rate of 86.3 % for triazophos within 140.0 min, marginally exceeding 60-ASO/WO3 (72.6 %) and significantly outperforming individual ASO (65.0 %), WO (59.5 %), and WO3 (56.2 %). This catalyst retains 88.9 % of its activity after five cycles, showcasing exceptional efficiency and stability. Additionally, its electrochemical surface area (ECSA, 310.0 cm2), total organic carbon (TOC, removal rate of 73.7 %), photocurrent, and electrochemical impedance are all optimal. X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and theoretical calculations elucidate the critical role of oxygen vacancies and the S-scheme heterojunction in augmenting charge separation and photocatalytic performance, corroborating the synergistic effect of oxygen defects and the S-scheme. While individual factors can enhance photocatalytic activity, their combination results in a more pronounced effect. Liquid chromatography-mass spectrometry (LCMS) identifies the principal degradation intermediates, including 1-phenyl-3-hydroxy-1, 2, 4-triazole, diethyl thiophosphate, and 3, 5, 6-trichloro-2-pyridinol, underscoring the material\'s potential in environmental remediation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    研究提出了Ag2CrO4/Fe2O3/CeO2三元纳米复合材料,基于Fe2O3/CeO2二元复合材料,在太阳辐射下对亚甲基蓝的光降解表现出优异的光催化性能。Ag2CrO4/Fe2O3/CeO2纳米复合材料为正交晶系,钛铁矿,分别为Ag2CrO4,Fe2O3和CeO2的立方萤石相,根据XRD检验。通过SEM和TEM研究证明了纳米复合材料中Ag2CrO4,Fe2O3和CeO2之间的牢固结合。此外,发现Ag2CrO4和Fe2O3的耦合引起红移,并将CeO2吸收边缘从UV移至可见光谱。这背后的原因是CeO2的带隙降低了2.85至2.69eV,并且在可见光区域吸收带强度增加。利用可见光,Ag2CrO4/Fe2O3/CeO2三元纳米复合材料在100min内对亚甲基蓝(MB)的降解表现出增强的光催化性能(98.90%)。通过3个连续循环探索了光催化剂的长期可靠性和可回收性。进行了活性自由基猝灭测试,以阐明O2-和OH的参与,O2-和OH是MB光催化分解中的主要反应性物种。Ag2CrO4/Fe2O3/CeO2三元纳米复合材料的光降解活性显着提高,使它们非常适合有效去除存在于纺织废水中的有害染料。
    The study presents Ag2CrO4/Fe2O3/CeO2 ternary nanocomposite, based on Fe2O3/CeO2 binary composites, which demonstrated excellent photocatalytic performance in the photodegradation of methylene blue under solar irradiation. The Ag2CrO4/Fe2O3/CeO2 nanocomposites was orthorhombic, ilmenite, and cubic-fluorite phases of Ag2CrO4, Fe2O3, and CeO2, respectively, according to the XRD examination. A strong bond between Ag2CrO4, Fe2O3, and CeO2 within the nanocomposite was demonstrated by the SEM and TEM investigations. Moreover, it was discovered that the coupling of Ag2CrO4 and Fe2O3 caused a red shift and moved CeO2 absorption edge from the UV to the visible spectrum. The reason behind this is that the band gap of CeO2 reduced 2.85 to 2.69 eV and the absorbance band intensity increased in visible region. Utilizing visible light, Ag2CrO4/Fe2O3/CeO2 ternary nanocomposites exhibit enhanced photocatalytic properties (98.90%) for the degradation of methylene blue (MB) within 100 min. The long-term reliability and recyclability of the photocatalyst were explored through 3 successive cycles. An active radical quenching test was conducted to elucidate the involvement of O2 - and OH which are the primary reactive species in the photocatalytic breakdown of MB. Ag2CrO4/Fe2O3/CeO2 ternary nanocomposites displayed notable improvements in photodegradation activity, making them well suited for the effective removal of hazardous dyes present in textile effluents.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    将不同的金属有机骨架(MOF)组装成混合MOF-on-MOF异质结构已被确立为开发各种应用的协同性能的有希望的方法。这里,我们通过在UiO-66(Zr)-NH2纳米粒子上外延生长MIL-88B(Fe)来探索MOF-on-MOF异质结构的性能。选定MOF成分的面选择性设计和适当的能带结构排列使其可以用作太阳能驱动的水分解的活性非均相光催化剂。该复合材料在400和450nm处实现光催化总水分解的表观量子产率约为0.9%,与以前的类似报告相比非常有利的值。通过光谱和电化学表征以及扫描透射和透射电子显微镜(STEM,TEM)测量。这项研究举例说明了开发MOF-on-MOF异质结构的可能性,该异质结构在Z方案机制下运行,并在太阳光下表现出对光催化水分解的出色活性。
    Assembly of different metal-organic frameworks (MOFs) into hybrid MOF-on-MOF heterostructures has been established as a promising approach to develop synergistic performances for a variety of applications. Here, we explore the performance of a MOF-on-MOF heterostructure by epitaxial growth of MIL-88B(Fe) onto UiO-66(Zr)-NH2 nanoparticles. The face-selective design and appropriate energy band structure alignment of the selected MOF constituents have permitted its application as an active heterogeneous photocatalyst for solar-driven water splitting. The composite achieves apparent quantum yields for photocatalytic overall water splitting at 400 and 450 nm of about 0.9%, values that compare much favorably with previous analogous reports. Understanding of this high activity has been gained by spectroscopic and electrochemical characterization together with scanning transmission and transmission electron microscopy (STEM, TEM) measurements. This study exemplifies the possibility of developing a MOF-on-MOF heterostructure that operates under a Z-scheme mechanism and exhibits outstanding activity toward photocatalytic water splitting under solar light.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这里,证明了用钨酸钇纳米片封装的硫化锌量子点的0D/2D设计,随后用于增加亮蓝(BB)的去除,甲基红(MR)染料和多西环素药物使用紫外可见光。所制备的ZnS-Y2WO6纳米杂化物表现出优异的催化活性,达到约89.92%的降解效率,BB占80%和85.51%,MR染料和多西环素药物,分别,最小照射时间为120、60和125分钟。由于光吸收增强,这些纳米杂化物在光催化效率方面优于Y2WO6,高效的电荷转移,并减少了ZnS和Y2WO6纳米颗粒之间的电荷载流子复合。ZnS和Y2WO6纳米颗粒的协同组合导致复合物表面上的多个活性位点。此外,ZnS-Y2WO6纳米杂化物对BB和MR染料保持了79.45%和70.12%的优异降解效率,分别,即使在连续五个周期之后,没有明显的催化活性损失。利用各种分析方法彻底分析所产生的ZnS-Y2WO6纳米杂化物。此外,利用实验数据考察了有机染料和多西环素药物降解的可能机理,表明ZnS-Y2WO6纳米杂化物作为在水生条件下氧化有机染料和药物的优异光催化材料的潜力。
    Herein, it is demonstrated that 0D/2D design of zinc sulfide quantum dots encapsulated with yttrium tungstate nanosheets, which were subsequently used to increase the removal of brilliant blue (BB), methyl red (MR) dyes and doxycycline drug using UV-visible light. The produced ZnS-Y2WO6 nanohybrids exhibited excellent catalytic activity, reaching degradation efficiencies of around 89.92%, 80% and 85.51 % for BB, MR dyes and doxycycline drug, respectively, with a minimum irradiation duration of 120, 60 and 125 min. These nanohybrids outperformed Y2WO6 in terms of photocatalytic efficacy due to enhanced light absorption, efficient charge transfer, and decreased charge carrier recombination between ZnS and Y2WO6 nanoparticles. The synergistic combination of ZnS and Y2WO6 nanoparticles resulted in multiple active sites on the composite surface. Furthermore, the ZnS-Y2WO6 nanohybrids maintained excellent degradation efficiencies of 79.45% and 70.12% for BB and MR dyes, respectively, even after five consecutive cycles, with no significant loss of catalytic activity. The produced ZnS-Y2WO6 nanohybrids were thoroughly analyzed utilizing a variety of analytical methods. Furthermore, the degradation of organic dyes and doxycycline drug related possible mechanism were examined using experimental data, indicating the potential of ZnS-Y2WO6 nanohybrids as excellent photocatalytic materials for oxidizing organic dyes and drugs in aquatic conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过光催化产生氢气是解决环境问题和能源危机的一项令人着迷的技术。然而,追求成本效益,稳定,和有效的光催化剂在能源转换领域仍然是一个重大的挑战。在这里,我们设计了新型的InVO4/Ti3C2MXene(IVTC)异质结构,采用酸蚀刻产生具有手风琴状形态的Ti3C2MXene,使用水热技术生产正交InVO4纳米颗粒(NPs),并通过自组装方法将它们整合在一起。场发射扫描电子显微镜和HRTEM分析均显示InVO4NP的一致分布,在两个表面和Ti3C2MXene片之间的平均尺寸为43.4nm。Ti3C2MXene纳米片和InVO4之间的紧密界面抑制了载流子复合并促进了电荷转移,从而促进光催化H2的产生。在可见光照射下,在含有优化的10%的InVO4负载量的IVTC异质结构中,氢释放速率增强,与原始InVO4NP相比,表现出超过3倍的增加,在四个周期内保持效率。这项研究提出了一种有希望的方法,用于设计和创建具有优异的可见光驱动的光催化活性的高效异质结构,以析出H2。
    The generation of hydrogen through photocatalysis is a fascinating technology for addressing environmental concerns and the energy crisis. Nevertheless, the quest for cost-effective, stable, and efficient photocatalysts in the realm of energy conversion remains a significant challenge. Herein, we designed novel InVO4/Ti3C2 MXene (IVTC) heterostructures by employing acid etching to produce Ti3C2 MXene with an accordion-like morphology, using the hydrothermal technique for the production of orthorhombic InVO4 nanoparticles (NPs), and integrating them through a self-assembly approach. Both field-emission scanning electron microscopy and HRTEM analyses revealed a consistent distribution of InVO4 NPs with an average size of 43.4 nm on both surfaces and between the sheets of Ti3C2 MXene. The intimate interface between the Ti3C2 MXene nanosheet and InVO4 suppressed carrier recombination and promoted charge transfer, thereby boosting photocatalytic H2 production. Under visible light exposure, the rate of hydrogen evolution is enhanced in IVTC heterostructures containing an optimized 10% loading of InVO4, exhibiting over a 3-fold increase compared to pristine InVO4 NPs, maintaining efficiency across four cycles. This research presents a promising method for designing and creating high-efficiency heterostructures possessing excellent visible-light-driven photocatalytic activity for H2 evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肤浅的,一步热缩聚方法已被用于表现石墨烯样石墨碳氮化物(g-C3N4)催化剂。合成的g-C3N4通过SEM和EDAX分析得到了良好的表征,XRD,ATR-IR,FTIR,荧光光谱法,拉曼光谱和紫外可见光谱提供结构,与g-C3N4结构有关的形态组合。g-C3N4显示出优异的光化学稳定性,形态学,导电碳骨架和优越的光催化活性。使用Tauc图确定g-C3N4的带隙值为2.34eV。由于低带隙(2.33eV)和独特的形态,提供了光生电荷的高分离和迁移能力,g-C3N4显示出增强的光催化活性,用于去除许多有机染料,如罗丹明B(RhB),水晶紫(CV),亚甲蓝(MB),甲基橙(MO),萘酚橙(NO)和苯酚衍生物,对硝基苯酚(p-NP)。其中,在g-C3N4存在的情况下,在阳光照射下,RhB染料在90分钟内降解了近81%,而其他染料和p-NP的降解率较低。从实验数据来看,发现MO和p-NP降解率最小。RhB降解的速率常数为1.1×10-2min-1。因此,g-C3N4可以通过去除这些有机污染物而用作废水处理的有效光催化剂。
    A superficial, one step thermal polycondensation method has been employed for the manifestation of graphene like graphitic carbon nitride (g-C3N4) catalyst. The as synthesized g-C3N4 was well characterized by SEM and EDAX analysis, XRD, ATR-IR, FTIR, Fluorescence spectroscopy, Raman spectroscopy and UV-Visible spectroscopy which provide structural, morphological assemblage relating to the structure of g-C3N4. The g-C3N4 showed that an outstanding photochemical stability, morphology, conductive carbon framework and superior photocatalytic activity. The band gap value of g-C3N4 is 2.34 eV determined using Tauc plot. Due to low band gap (2.33 eV) and unique morphology which provides high separation and migration ability of the photogenerated charges, the g-C3N4 shows enhanced photocatalytic activity for the removal of many organic dyes such as Rhodamine B (RhB), Crystal Violet (CV), Methylene Blue (MB), Methyl Orange (MO), Naphthol Orange (NO) and a phenol derivative, p-Nitrophenol (p-NP). Among them, RhB dye was degraded almost 81 % at 90 min under sunlight irradiation in presence g-C3N4 while other dyes and p-NP was degraded at lower rate. From the experimental data, it was found that MO and p-NP degradation rate was least. The rate constant for degradation of Rh B is 1.1 × 10-2 min-1. Therefore, g-C3N4 can be used as an efficient photocatalyst for waste water treatment by the removal of such organic pollutants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    光催化剂中原子分散的活性位点提供了独特的优势,如局部调谐的电子结构,量子尺寸效应,和最大限度地利用原子物种。其中,非对称原子双位点是特别感兴趣的,因为它们的非对称电荷分布产生局部内置电势以增强电荷分离和转移。此外,双位点为调整复杂的多电子和多反应途径提供了灵活性,如CO2还原反应。双位点的协调为工程结构-活性-选择性关系开辟了新的可能性。这个全面的概述讨论了光催化CO2还原中的有效和可持续的光催化过程,专注于战略性活动现场设计和未来挑战。它为光催化转化工艺的设计和开发提供了及时的参考,特别探索利用不对称原子双位点进行复杂的光催化转化途径,这里的例子是二氧化碳转化为有价值的化学物质。
    Atomically dispersed active sites in a photocatalyst offer unique advantages such as locally tuned electronic structures, quantum size effects, and maximum utilization of atomic species. Among these, asymmetric atomic dual-sites are of particular interest because their asymmetric charge distribution generates a local built-in electric potential to enhance charge separation and transfer. Moreover, the dual sites provide flexibility for tuning complex multielectron and multireaction pathways, such as CO2 reduction reactions. The coordination of dual sites opens new possibilities for engineering the structure-activity-selectivity relationship. This comprehensive overview discusses efficient and sustainable photocatalysis processes in photocatalytic CO2 reduction, focusing on strategic active-site design and future challenges. It serves as a timely reference for the design and development of photocatalytic conversion processes, specifically exploring the utilization of asymmetric atomic dual-sites for complex photocatalytic conversion pathways, here exemplified by the conversion of CO2 into valuable chemicals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在太阳能利用领域,人们越来越关注设计和实施有效的光催化系统,将太阳能转化为有价值的化学燃料。共价有机聚合物(COPs)作为可见光驱动有机转化的光催化剂的潜力已被广泛研究,将他们定位为这一领域的有前途的候选人。在COP的设计中,引入供体-受体排列有助于电子从供体转移到受体,产生电荷转移复合物并导致增强的导电性和改进的电荷分离。在这里,我们提出了一种新型的腙连接的共价有机聚合物ETBC-PyHz,含有TPE供体和吡啶受体。利用这个,已开发出一种涉及C-S键形成的氧化交叉偶联反应的有效方法。这个过程涉及芳基肼和异丙醇,并导致通过形成芳基和硫代芳烃自由基产生不对称的二芳基硫化物。这种转化具有非常重要的意义,因为在该过程中产生的副产物是氮气和水,使它对环境无害。
    In the realm of solar energy utilization, there is a growing focus on designing and implementing effective photocatalytic systems, for the conversion of solar energy into valuable chemical fuels. The potential of Covalent Organic Polymers (COPs) as photocatalysts for visible-light-driven organic transformation has been widely investigated, positioning them as promising candidates in this field. In the design of COPs, introducing a donor-acceptor arrangement facilitates the transfer of electrons from the donor to the acceptor, creating a charge transfer complex and leading to enhanced conductivity and improved charge separation. Here we present a novel hydrazone-linked covalent organic polymer ETBC-PyHz containing TPE donor and pyridine acceptor. Utilizing this, an efficient method has been developed for an oxidative cross-coupling reaction involving C-S bond formation. This process involves arylhydrazines and arenethiols, and results in the production of unsymmetrical diaryl sulfides via the formation of aryl and thioarene radicals. This conversion holds significant importance because the byproducts produced during the process are nitrogen and water, making it environmentally benign.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    聚苯胺(PANI),典型的有机光催化剂,具有可调节的结构和良好的稳定性,可以很容易地大规模合成,而且很经济。PANI掺杂离子调节其内部结构,提高其光催化性能。然而,其光催化性能受到掺杂浓度及其固有性质的限制,阻碍其进一步应用。在这里,制备了具有压电光催化功能的PANI薄膜,以提高光催化性能并探索其自动力环境净化性能。PANI/聚偏氟乙烯-共-六氟丙烯(PVDF-HFP)夹层膜,以PVDF-HFP为夹层,是通过将压电场引入PANI光催化剂来制备的,从而实现优异的压电光催化性能。在磁力搅拌下60分钟后,制造的压电光催化剂以91.2%的速率降解甲基橙。由于全有机催化剂的低杨氏模量,使用PANI/PVDF-HFP薄膜实现自供电净化。通过在其中加载膜来官能化叶片表面,以在阳光和水流下去除污染物。因此,这项研究提出了一个共同的策略,其中引入压电中间层以装载有机光催化剂用于制备全有机压电光催化剂。这种压电光催化剂可以很容易地回收和响应弱的力,实现其应用于自供电环境净化。
    Polyaniline (PANI), a typical organic photocatalyst, has an adjustable structure and good stability, can be easily synthesized on a large scale, and is economical. PANI is doped with ions to regulate its internal structure and improve its photocatalytic performance. However, its photocatalytic performance is limited by the doping concentration and its intrinsic properties, hindering its further application. Herein, PANI films with a piezo-photocatalytic function are fabricated to improve photocatalytic performance and explore their self-powered environmental purification property. PANI/poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) sandwich films, with PVDF-HFP as the interlayer, are prepared by introducing a piezoelectric field into PANI photocatalysts, thereby achieving excellent piezo-photocatalytic performance. The as-fabricated piezo-photocatalyst degrades methyl orange at a rate of 91.2% after 60 min under magnetic stirring. Owing to the low Young\'s modulus of the all-organic catalyst, self-powered purification is realized using the PANI/PVDF-HFP film. Leaf surfaces are functionalized by loading the film in them for removing pollutants under sunlight and water flow. Thus, this study proposes a common strategy, wherein a piezoelectric interlayer is introduced to load the organic photocatalyst for preparing an all-organic piezo-photocatalyst. This piezo-photocatalyst can be easily recycled and responds to weak forces, realizing its application for self-powered environmental purification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号