Oxindoles

Oxindoles
  • 文章类型: Journal Article
    Bisindole natural products consist of two monomeric indole alkaloid units as their obligate constituents. Bisindoles are more potent with respect to their biological activity than their corresponding monomeric units. In addition, the synthesis of bisindoles are far more challenging than the synthesis of monomeric indole alkaloids. Herein is reviewed the enantiospecific total and partial synthesis of bisindole alkaloids isolated primarily from the Alstonia genus of the Apocynaceae family. The monomeric units belong to the sarpagine, ajmaline, macroline, vobasine, and pleiocarpamine series. An up-to-date discussion of their isolation, characterization, biological activity as well as approaches to their partial and total synthesis by means of both synthetic and biosynthetic strategies are presented.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    BACKGROUND: 2-Indolinone is a well-known aromatic heterocyclic organic compound. A lot of work has been done on this bicyclic structure by academic and company researchers to synthesize compounds directed to a plethora of molecular targets in order to discover new drug leads. This review presents up-to-date information in the field of cancer therapy research based on this small building block.
    METHODS: The present review gives an account of the recent patent literature (2008-2014) describing the discovery of 2-indolinone derivatives with selected therapeutic activities. In this period, a large amount of patents were published on this topic. We have limited the analysis to 37 patents on 2-indolinone derivatives having potential clinical application as chemotherapeutic agents. In this review, the therapeutic applications of 2-indolinone derivatives for the treatment of cancer reported in international patents have been discussed.
    CONCLUSIONS: 2-Indolinone is the scaffold of the compounds considered from a medicinal chemistry perspective. Many of them have been developed and marketed for therapeutic use. In cancer chemotherapy, progress has been made in designing selective 2-indolinone derivatives. Some of them show preclinical efficacy. However, 2-indolinone has not exhausted all of its potential in the development of new compounds for clinical applications and remains a great tool for future research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    BACKGROUND: The vasopressin V1a and V1b receptors are involved in many crucial physiological, reproductive, behavioral and social functions. Consequently, they are also involved in several pathological conditions, thus the ligands capable of selective stimulation/inhibition of these receptors may present therapeutic benefit in a variety of diseases.
    METHODS: In this review, the author focuses on the vasopressin V1a and V1b receptors, their biological functions and agonists and antagonists patented in the years 2012 - 2014. This paper is divided according to both the target receptor and the applicant and describes the compounds from the patents along with their biological activity.
    CONCLUSIONS: In the recent years, pharmaceutical companies have discovered and patented new compounds which act through vasopressin V1a and/or V1b receptors, both peptide and non-peptide. Among the V1bR antagonists published in the last years, the oxindole derivatives appear to be the most promising drug candidates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • DOI:
    文章类型: Journal Article
    Fibroblast growth factor (FGF) signals are transduced through FGF receptors (FGFRs) and FRS2/FRS3- SHP2 (PTPN11)-GRB2 docking protein complex to SOS-RAS-RAF-MAPKK-MAPK signaling cascade and GAB1/GAB2-PI3K-PDK-AKT/aPKC signaling cascade. The RAS approximately MAPK signaling cascade is implicated in cell growth and differentiation, the PI3K approximately AKT signaling cascade in cell survival and cell fate determination, and the PI3K approximately aPKC signaling cascade in cell polarity control. FGF18, FGF20 and SPRY4 are potent targets of the canonical WNT signaling pathway in the gastrointestinal tract. SPRY4 is the FGF signaling inhibitor functioning as negative feedback apparatus for the WNT/FGF-dependent epithelial proliferation. Recombinant FGF7 and FGF20 proteins are applicable for treatment of chemotherapy/radiation-induced mucosal injury, while recombinant FGF2 protein and FGF4 expression vector are applicable for therapeutic angiogenesis. Helicobacter pylori, a causative pathogen for peptic ulcer diseases, chronic atrophic gastritis and gastric cancer, injects bacterial proteins into gastric epithelial cells by using Type IV secretion system, which leads to FGF signaling activation through FGF2 upregulation as well as CagA-dependent SHP2 activation. FGFR2 gene is preferentially amplified and overexpressed in diffuse-type gastric cancer. PD173074 is a small-molecule inhibitor for FGFR, while RO4396686 and SU6668 are small-molecule inhibitors for FGFR and other tyrosine kinases. Cocktail therapy using multiple protein kinase inhibitors could enhance the therapeutic effects for gastrointestinal cancer through the reduction of recurrence associated with somatic mutations of drug-target genes. Single nucleotide polymorphism (SNP) and copy number polymorphism (CNP) of genes encoding FGF signaling molecules will be identified as novel risk factors of gastrointestinal cancer. Personalized prevention and personalized medicine based on the combination of genetic screening and novel therapeutic agents could dramatically improve the prognosis of cancer patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Tenidap is a novel, once-daily antirheumatic drug which has shown promising results against rheumatoid arthritis in extensive clinical trials. It combines NSAID-like cyclooxygenase inhibition with suppression of the acute phase response. In macrophages, tenidap inhibits the lipopolysaccharide-induced synthesis of interleukins-1 and -6, but it tends to potentiate the lipopolysaccharide-induced synthesis of tumor necrosis factor alpha, due to its cyclooxygenase inhibition. In macrophages, tenidap is a potent inhibitor of zymosan-induced responses, not only the induction of proinflammatory cytokines, but also arachidonate mobilization, protein phosphorylation, and inositol phosphate formation, possibly through interference with the receptor-mediated upregulation of phospholipase C. Tenidap also acts as an intracellular acidifier in many cell types, which may explain at least some of its other effects. Recent studies have indicated that, in addition to modulation of prostanoid and cytokine formation, tenidap has many other effects beneficial in rheumatic disease. It has been shown to inhibit bone resorption, neutrophil adhesion and degranulation, the interleukin-1-induced suppression of glycosaminoglycan synthesis, as well as the production of active metalloproteinases from chondrocytes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号