NEDD8 Protein

NEDD8 蛋白
  • 文章类型: Clinical Trial, Phase I
    Pevonedistat(TAK-924/MLN4924)是NEDD8激活酶的研究性小分子抑制剂,已在实体肿瘤和血液恶性肿瘤中表现出临床活性。在这里,我们报告了评估利福平效果的1期研究的结果,一个强大的CYP3A诱导剂,关于pevonetist在晚期实体瘤患者中的药代动力学(PK)(NCT03486314)。患者在第1天(在不存在利福平的情况下)和第10天(在存在利福平的情况下)通过1小时输注接受单次50mg/m2的培维他剂量,并在第3-11天每天口服利福平600mg。纳入20例患者,可进行PK和安全性评估。在以50mg/m2的剂量单剂量服用培维尼坦后,在存在和不存在利福平的情况下,培维尼坦的平均终末半衰期分别为5.7和7.4小时。分别。利福平存在下的培维尼坦的几何平均AUC0-inf是不存在利福平的79%(90%CI:69.2%-90.2%)。利福平存在时的维维酮酯的几何平均Cmax与不存在利福平时的几何平均Cmax相似(96.2%;90%CI:79.2%-117%)。pevonestat和利福平联合用药,一种强大的代谢酶诱导剂,并没有导致pevonetist的全身暴露有临床意义的减少。研究结果支持以下建议:接受CYP3A诱导剂的患者不需要调整pevonetist剂量。临床医师。GOV标识符:NCT03486314。
    Pevonedistat (TAK-924/MLN4924) is an investigational small molecule inhibitor of the NEDD8-activating enzyme that has demonstrated clinical activity across solid tumors and hematological malignancies. Here we report the results of a phase 1 study evaluating the effect of rifampin, a strong CYP3A inducer, on the pharmacokinetics (PK) of pevonedistat in patients with advanced solid tumors (NCT03486314). Patients received a single 50 mg/m2 pevonedistat dose via a 1-h infusion on Days 1 (in the absence of rifampin) and 10 (in the presence of rifampin), and daily oral dosing of rifampin 600 mg on Days 3-11. Twenty patients were enrolled and were evaluable for PK and safety. Following a single dose of pevonedistat at 50 mg/m2, the mean terminal half-life of pevonedistat was 5.7 and 7.4 h in the presence and in the absence of rifampin, respectively. The geometric mean AUC0-inf of pevonedistat in the presence of rifampin was 79% of that without rifampin (90% CI: 69.2%-90.2%). The geometric mean Cmax of pevonedistat in the presence of rifampin was similar to that in the absence of rifampin (96.2%; 90% CI: 79.2%-117%). Coadministration of pevonedistat with rifampin, a strong metabolic enzyme inducer, did not result in clinically meaningful decreases in systemic exposures of pevonedistat. The study results support the recommendation that no pevonedistat dose adjustment is needed for patients receiving concomitant CYP3A inducers. CLINICALTRIALS.GOV IDENTIFIER: NCT03486314.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The newly identified CUBAN (Cullin binding domain associating with NEDD8) domain recognizes both ubiquitin and the ubiquitin-like NEDD8. Despite the high similarity between the two molecules, CUBAN shows a clear preference for NEDD8, free and conjugated to cullins. We previously characterized the domain structure, both alone and in complex with NEDD8. The results here reported are addressed to investigate the determinants that drive the selective binding of CUBAN towards NEDD8 and ubiquitin. The 15N HSQC NMR perturbation pattern of the labeled CUBAN domain, when combined with either NEDD8 or ubiquitin, shows a clear involvement of hydrophobic residues that characterize the early stages of these interactions. After a slow conformational selection step, hydrophobic and then neutral and polar interactions take place, which drive the correct orientation of the CUBAN domain, leading to differences in the recognition scheme of NEDD8 and ubiquitin. As a result, a cascade of induced fit steps seems to determine the structural preference shown for NEDD8 and therefore the basis of the selectivity of the CUBAN domain. Finally, molecular dynamics analysis was performed to determine by fluctuations the internal flexibility of the CUBAN/NEDD8 complex. We consider that our results, based on a structural investigation mainly focused on the early stages of the recognition, provide a fruitful opportunity to report the different behavior of the same protein with two highly similar binding partners.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Clinical Trial, Phase I
    Purpose This phase Ib study (NCT01862328) evaluated the maximum tolerated dose (MTD), safety, and efficacy of pevonedistat in combination with standard-of-care chemotherapies in patients with solid tumors. Methods Patients received pevonedistat with docetaxel (arm 1, n = 22), carboplatin plus paclitaxel (arm 2, n = 26), or gemcitabine (arm 3, n = 10) in 21-days (arms 1 and 2) or 28-days (arm 3) cycles. A lead-in cohort (arm 2a, n = 6) determined the arm 2 carboplatin dose. Dose escalation proceeded via continual modified reassessment. Results Pevonedistat MTD was 25 mg/m2 (arm 1) or 20 mg/m2 (arm 2); arm 3 was discontinued due to poor tolerability. Fifteen (23%) patients experienced dose-limiting toxicities during cycle 1 (grade ≥3 liver enzyme elevations, febrile neutropenia, and thrombocytopenia), managed with dose holds or reductions. Drug-related adverse events (AEs) occurred in 95% of patients. Most common AEs included fatigue (56%) and nausea (50%). One drug-related death occurred in arm 3 (febrile neutropenia). Pevonedistat exposure increased when co-administered with carboplatin plus paclitaxel; no obvious changes were observed when co-administered with docetaxel or gemcitabine. Among 54 response-evaluable patients, two had complete responses (arm 2) and 10 had partial responses (three in arm 1, one in arm 2a, six in arm 2); overall response rates were 16% (arm 1) and 35% (arm 2). High ERCC1 expression correlated with clinical benefit in arm 2. Conclusion Pevonedistat with docetaxel or with carboplatin plus paclitaxel was tolerable without cumulative toxicity. Sustained clinical responses were observed in pretreated patients receiving pevonedistat with carboplatin and paclitaxel. ClinicalTrials.gov identifier: NCT01862328.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Clinical Trial, Phase I
    OBJECTIVE: Evaluate the safety, pharmacokinetic profile, pharmacodynamic effects, and antitumor activity of the first-in-class investigational NEDD8-activating enzyme (NAE) inhibitor pevonedistat (TAK-924/MLN4924) in patients with relapsed/refractory lymphoma or multiple myeloma.
    METHODS: Patients with relapsed/refractory myeloma (n = 17) or lymphoma (n = 27) received intravenous pevonedistat 25 to 147 mg/m(2) on days 1, 2, 8, 9 (schedule A; n = 27) or 100 to 261 mg/m(2) on days 1, 4, 8, 11 (schedule B; n = 17) of 21-day cycles.
    RESULTS: Maximum tolerated doses were 110 mg/m(2) (schedule A) and 196 mg/m(2) (schedule B). Dose-limiting toxicities included febrile neutropenia, transaminase elevations, muscle cramps (schedule A), and thrombocytopenia (schedule B). Common adverse events included fatigue and nausea. Common grade ≥3 events were anemia (19%; schedule A), and neutropenia and pneumonia (12%; schedule B). Clinically significant myelosuppression was uncommon. There were no treatment-related deaths. Pevonedistat pharmacokinetics exhibited a biphasic disposition phase and approximate dose-proportional increases in systemic exposure. Consistent with the short mean elimination half-life of approximately 8.5 hours, little-to-no drug accumulation in plasma was seen after multiple dosing. Pharmacodynamic evidence of NAE inhibition included increased skin levels of CDT-1 and NRF-2 (substrates of NAE-dependent ubiquitin ligases), and increased NRF-2-regulated gene transcript levels in whole blood. Pevonedistat-NEDD8 adduct was detected in bone marrow aspirates, indicating pevonedistat target engagement in the bone marrow compartment. Three lymphoma patients had partial responses; 30 patients achieved stable disease.
    CONCLUSIONS: Pevonedistat demonstrated anticipated pharmacodynamic effects in the clinical setting, a tolerable safety profile, and some preliminary evidence that may be suggestive of the potential for activity in relapsed/refractory lymphoma.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号