Methicillin-resistant Staphylococcus aureus

耐甲氧西林金黄色葡萄球菌
  • 文章类型: Journal Article
    Utilizing nanomaterials as an alternative to antibiotics, with a focus on maintaining high biosafety, has emerged as a promising strategy to combat antibiotic resistance. Nevertheless, the challenge lies in the indiscriminate attack of nanomaterials on both bacterial and mammalian cells, which limits their practicality. Herein, Cu3SbS3 nanoparticles (NPs) capable of generating reactive oxygen species (ROS) are discovered to selectively adsorb and eliminate bacteria without causing obvious harm to mammalian cells, thanks to the interaction between O of N-acetylmuramic acid in bacterial cell walls and Cu of the NPs. Coupled with the short diffusion distance of ROS in the surrounding medium, a selective antibacterial effect is achieved. Additionally, the antibacterial mechanism is then identified: Cu3SbS3 NPs catalyze the generation of O2•-, which has subsequently been conversed by superoxide dismutase to H2O2. The latter is secondary catalyzed by the NPs to form •OH and 1O2, initiating an in situ attack on bacteria. This process depletes bacterial glutathione in conjunction with the disruption of the antioxidant defense system of bacteria. Notably, Cu3SbS3 NPs are demonstrated to efficiently impede biofilm formation; thus, a healing of MRSA-infected wounds was promoted. The bacterial cell wall-binding nanoantibacterial agents can be widely expanded through diversified design.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    BACKGROUND: Staphylococcus aureus, a commensal bacterium, colonizes the skin and mucous membranes of approximately 30% of the human population. Apart from conventional resistance mechanisms, one of the pathogenic features of S. aureus is its ability to survive in a biofilm state on both biotic and abiotic surfaces. Due to this characteristic, S. aureus is a major cause of human infections, with Methicillin-Resistant Staphylococcus aureus (MRSA) being a significant contributor to both community-acquired and hospital-acquired infections.
    RESULTS: Analyzing non-repetitive clinical isolates of MRSA collected from seven provinces and cities in China between 2014 and 2020, it was observed that 53.2% of the MRSA isolates exhibited varying degrees of ability to produce biofilm. The biofilm positivity rate was notably high in MRSA isolates from Guangdong, Jiangxi, and Hubei. The predominant MRSA strains collected in this study were of sequence types ST59, ST5, and ST239, with the biofilm-producing capability mainly distributed among moderate and weak biofilm producers within these ST types. Notably, certain sequence types, such as ST88, exhibited a high prevalence of strong biofilm-producing strains. The study found that SCCmec IV was the predominant type among biofilm-positive MRSA, followed by SCCmec II. Comparing strains with weak and strong biofilm production capabilities, the positive rates of the sdrD and sdrE were higher in strong biofilm producers. The genetic determinants ebp, icaA, icaB, icaC, icaD, icaR, and sdrE were associated with strong biofilm production in MRSA. Additionally, biofilm-negative MRSA isolates showed higher sensitivity rates to cefalotin (94.8%), daptomycin (94.5%), mupirocin (86.5%), teicoplanin (94.5%), fusidic acid (81.0%), and dalbavancin (94.5%) compared to biofilm-positive MRSA isolates. The biofilm positivity rate was consistently above 50% in all collected specimen types.
    CONCLUSIONS: MRSA strains with biofilm production capability warrant increased vigilance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The function of many bacterial processes depends on the formation of functional membrane microdomains (FMMs), which resemble the lipid rafts of eukaryotic cells. However, the mechanism and the biological function of these membrane microdomains remain unclear. Here, we show that FMMs in the pathogen methicillin-resistant Staphylococcus aureus (MRSA) are dedicated to confining and stabilizing proteins unfolded due to cellular stress. The FMM scaffold protein flotillin forms a clamp-shaped oligomer that holds unfolded proteins, stabilizing them and favoring their correct folding. This process does not impose a direct energy cost on the cell and is crucial to survival of ATP-depleted bacteria, and thus to pathogenesis. Consequently, FMM disassembling causes the accumulation of unfolded proteins, which compromise MRSA viability during infection and cause penicillin re-sensitization due to PBP2a unfolding. Thus, our results indicate that FMMs mediate ATP-independent stabilization of unfolded proteins, which is essential for bacterial viability during infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Virulent infectious agents such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and methicillin-resistant Staphylococcus aureus (MRSA) induce tissue damage that recruits neutrophils, monocyte, and macrophages, leading to T cell exhaustion, fibrosis, vascular leak, epithelial cell depletion, and fatal organ damage. Neutrophils, monocytes, and macrophages recruited to pathogen-infected lungs, including SARS-CoV-2-infected lungs, express phosphatidylinositol 3-kinase gamma (PI3Kγ), a signaling protein that coordinates both granulocyte and monocyte trafficking to diseased tissues and immune-suppressive, profibrotic transcription in myeloid cells. PI3Kγ deletion and inhibition with the clinical PI3Kγ inhibitor eganelisib promoted survival in models of infectious diseases, including SARS-CoV-2 and MRSA, by suppressing inflammation, vascular leak, organ damage, and cytokine storm. These results demonstrate essential roles for PI3Kγ in inflammatory lung disease and support the potential use of PI3Kγ inhibitors to suppress inflammation in severe infectious diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    受甘草甜素强大的药理活性和定向自组装成水凝胶的启发,我们创造了一个新的无载体,通过将甘草甜素与香芹酚(CAR)结合使用的可注射水凝胶(CAR@glycygel),没有任何其他化学交联剂,促进细菌感染皮肤的伤口愈合。CAR似乎容易溶解并负载到CAR@glycygel中。CAR@glycygel有一个致密的,多孔,海绵结构和强抗氧化特性。体外,它显示出比游离CAR更好的抗菌能力。对于耐甲氧西林金黄色葡萄球菌(MRSA),金黄色葡萄球菌,和大肠杆菌,CAR@glycygel的抑制区直径值分别为3.80±0.04、3.31±0.20和3.12±0.24倍,分别,比那些免费的车。CAR@glycygel的MIC为156.25μg/mL,而游离CAR对这三种细菌的MIC为1250.00μg/mL。其抗菌机制似乎涉及破坏细菌细胞壁和生物膜的完整性,导致AKP的泄漏和生物膜形成的抑制。在体内,CAR@glycygel有效止血。当应用于感染MRSA的大鼠的皮肤伤口时,CAR@glycygel具有较强的杀菌活性并改善伤口愈合。CAR@glycygel的伤口愈合率为49.59±15.78%,第3天、第7天和第11天分别为93.02±3.09%和99.02±0.55%,明显优于空白对照组和阳性对照组。CAR@glycygel加速伤口愈合的机制涉及促进表皮重塑,促进毛囊的生长,刺激胶原蛋白沉积,缓解炎症,促进血管生成。总的来说,CAR@glycygel显示出作为感染皮肤伤口的伤口敷料的巨大潜力。
    Inspired by glycyrrhizin\'s strong pharmacological activities and the directed self-assembly into hydrogels, we created a novel carrier-free, injectable hydrogel (CAR@glycygel) by combining glycyrrhizin with carvacrol (CAR), without any other chemical crosslinkers, to promote wound healing on bacteria-infected skin. CAR appeared to readily dissolve and load into CAR@glycygel. CAR@glycygel had a dense, porous, sponge structure and strong antioxidant characteristics. In vitro, it showed better antibacterial ability than free CAR. For methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus, and Escherichia coli, the diameter of inhibition zone values of CAR@glycygel were 3.80 ± 0.04, 3.31 ± 0.20 and 3.12 ± 0.24 times greater, respectively, than those of free CAR. The MICs for CAR@glycygel was 156.25 μg/mL while it was 1250.00 μg/mL for free CAR to these three bacteria. Its antibacterial mechanism appeared to involve destruction of the integrity of the bacterial cell wall and biomembrane, leading to a leakage of AKP and inhibition of biofilm formation. In vivo, CAR@glycygel effectively stopped bleeding. When applied to skin wounds on rats infected with MRSA, CAR@glycygel had strong bactericidal activity and improved wound healing. The wound healing rates for CAR@glycygel were 49.59 ± 15.78 %, 93.02 ± 3.09 % and 99.02 ± 0.55 % on day 3, day 7, and day 11, respectively, which were much better than blank control and positive control groups. Mechanisms of CAR@glycygel accelerating wound healing involved facilitating epidermis remolding, promoting the growth of hair follicles, stimulating collagen deposition, mitigating inflammation, and promoting angiogenesis. Overall, CAR@glycygel showed great potential as wound dressing for infected skin wounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于全基因组测序(WGS)数据,研究了来自遍布各大洲和30年的不同宿主的克隆复合物(CC)398的金黄色葡萄球菌的国际集合。该集合由来自2994个菌株和134个最近测序的瑞士耐甲氧西林金黄色葡萄球菌(MRSA)CC398菌株的公开基因组数据组成。时间校准的系统发育揭示了亚洲存在的不同的系统群,北美、南美和欧洲。欧洲MRSA在1950年代初与甲氧西林敏感的金黄色葡萄球菌(MSSA)不同。两个主要的欧洲系统组(EP4和EP5),大约在1974年,是MRSACC398在欧洲传播的主要驱动因素。在EP5中,在欧洲马群中传播的新兴MRSA谱系(EP5-Leq)大约在1996年与猪谱系(EP5-Lpg)不同,还含有与人类相关的菌株。EP5-Leq的特征是葡萄球菌盒染色体mec(SCCmec)IVa和spa型t011(CC398-IVa-t011),和EP5-Lpg通过CC398-SCCmecVc-t011。谱系特异性抗生素抗性和毒力基因模式主要是通过获得可移动的遗传元件如SCCmec介导的,金黄色葡萄球菌基因组群岛(SaGI),预言和转座子。金黄色葡萄球菌致病性岛(SaPIs)上存在不同的毒力因子组合,和含有新的抗微生物药物抗性基因的元件与在欧洲扩展的某些谱系有关。这项基于WGS的分析揭示了考虑宿主的国际MRSACC398人群的实际进化轨迹和流行病学趋势,temporal,地理和分子因素。它为基于WGS的全球MRSACC398适应性进化的单一健康研究以及当地爆发调查提供了基线。
    An international collection of Staphylococcus aureus of clonal complex (CC) 398 from diverse hosts spanning all continents and a 30 year-period is studied based on whole-genome sequencing (WGS) data. The collection consists of publicly available genomic data from 2994 strains and 134 recently sequenced Swiss methicillin-resistant S. aureus (MRSA) CC398 strains. A time-calibrated phylogeny reveals the presence of distinct phylogroups present in Asia, North and South America and Europe. European MRSA diverged from methicillin-susceptible S. aureus (MSSA) at the beginning of the 1950s. Two major European phylogroups (EP4 and EP5), which diverged approximately 1974, are the main drivers of MRSA CC398 spread in Europe. Within EP5, an emergent MRSA lineage spreading among the European horse population (EP5-Leq) diverged approximately 1996 from the pig lineage (EP5-Lpg), and also contains human-related strains. EP5-Leq is characterized by staphylococcal cassette chromosome mec (SCCmec) IVa and spa type t011 (CC398-IVa-t011), and EP5-Lpg by CC398-SCCmecVc-t011. The lineage-specific antibiotic resistance and virulence gene patterns are mostly mediated by the acquisition of mobile genetic elements like SCCmec, S. aureus Genomic Islands (SaGIs), prophages and transposons. Different combinations of virulence factors are present on S. aureus pathogenicity islands (SaPIs), and novel antimicrobial resistance gene containing elements are associated with certain lineages expanding in Europe. This WGS-based analysis reveals the actual evolutionary trajectory and epidemiological trend of the international MRSA CC398 population considering host, temporal, geographical and molecular factors. It provides a baseline for global WGS-based One-Health studies of adaptive evolution of MRSA CC398 as well as for local outbreak investigations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    耐甲氧西林金黄色葡萄球菌(MRSA),一种臭名昭著的细菌,耐药性高,术后容易复发,提出了重大的临床治疗挑战。在目前新抗生素稀缺的情况下,鉴定现有抗生素的佐剂是对抗由多重耐药革兰氏阳性细菌引起的感染的有希望的方法。体外协同作用试验,其中包括MIC测定,时间-杀伤曲线,抗菌药物敏感性试验,和活/死细菌染色测定,透露了劳罗卡普兰,一种广泛使用的化学透皮促进剂,可以增强头孢菌素对MRSA的抗菌活性。体外,laurocapram联合头孢克肟对MRSA显示出优异的协同活性(FICI=0.28±0.00)。此外,美罗卡普兰与头孢克肟合用可能抑制MRSA生物膜的形成,引起细胞膜损伤。在此之后,我们发现,在MRSA皮肤感染模型和MRSA肺炎模型中,美罗卡普兰联合头孢克肟可以缓解小鼠的症状.总之,laurocapram是一种有前途的低成本抗菌佐剂,为进一步探索使用较低剂量的头孢菌素来对抗MRSA感染提供了新的策略。
    Methicillin-resistant Staphylococcus aureus (MRSA), a notorious bacterium with high drug resistance and easy recurrence after surgery, has posed significant clinical treatment challenges. In the current scarcity of new antibiotics, the identification of adjuvants to existing antibiotics is a promising approach to combat infections caused by multidrug-resistant Gram-positive bacteria. The in vitro synergy test, which included a MIC assay, time-kill curve, antimicrobial susceptibility testing, and live/dead bacteria staining assay, revealed that laurocapram, a widely used chemical transdermal enhancer, could potentiate the antibacterial activity of cephalosporins against MRSA. In vitro, laurocapram combined with cefixime showed an excellent synergistic activity against MRSA (FICI = 0.28 ± 0.00). In addition, the combination of laurocapram and cefixime may inhibited the formation of MRSA biofilm and caused cell membrane damage. Following that, we discovered that combining laurocapram with cefixime could alleviate the symptoms of mice in the MRSA skin infection model and the MRSA pneumonia model. In conclusion, laurocapram is a promising and low-cost antibacterial adjuvant, providing a new strategy for further exploring the use of lower doses of cephalosporins to combat MRSA infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:慢性伤口的流行仍然是人类医学的负担。耐甲氧西林金黄色葡萄球菌(MRSA)通常从感染的伤口中分离出来。MRSA感染主要通过损害局部免疫细胞功能来延迟愈合。本研究旨在探讨间充质基质细胞(MSC)分泌生物活性因子的潜能,定义为分泌组,改善体内先天免疫反应。从马的骨髓中分离出MSCs,作为伤口愈合的有价值的转化模型。MSC分泌组,收集为条件培养基(CM),使用急性和MRSA感染的皮肤伤口的小鼠模型进行体内评估。
    方法:使用穿孔活检在每只小鼠的背部产生两个全厚度皮肤伤口。每天用对照培养基或骨髓来源的MSC(BM-MSC)CM治疗急性伤口。抗生素莫匹罗星作为MRSA感染的伤口实验的阳性对照。每天拍摄伤口,和测量伤口图像以确定闭合率。进行三色染色以从组织学上检查伤口组织,免疫荧光抗体结合用于评估免疫细胞浸润。擦拭MRSA感染模型中的伤口以定量细菌负荷。
    结果:与对照组相比,用BM-MSCCM治疗的急性伤口显示加速的伤口闭合,如肉芽组织形成和分辨率增强所示,增加的脉管系统和毛囊的再生。这种处理还导致嗜中性粒细胞和巨噬细胞浸润增加。与对照治疗的感染伤口相比,用BM-MSCCM治疗的慢性MRSA感染伤口显示出减少的细菌负荷,同时肉芽组织形成的分辨率更高,促愈合M2巨噬细胞的浸润增加。
    结论:总的来说,我们的发现表明,BM-MSCCM具有促进愈合的作用,体内对伤口愈合的免疫调节和抗菌作用,验证进一步探索MSC分泌组作为一种新的治疗选择,以改善急性和慢性伤口的愈合,尤其是那些感染了抗生素抗性细菌的人。
    OBJECTIVE: The prevalence of chronic wounds continues to be a burden in human medicine. Methicillin-resistant Staphylococcus aureus (MRSA) is commonly isolated from infected wounds. MRSA infections primarily delay healing by impairing local immune cell functions. This study aimed to investigate the potential of mesenchymal stromal cell (MSC)-secreted bioactive factors, defined as the secretome, to improve innate immune responses in vivo. MSCs were isolated from the bone marrow of horses, which serve as valuable translational models for wound healing. The MSC secretome, collected as conditioned medium (CM), was evaluated in vivo using mouse models of acute and MRSA-infected skin wounds.
    METHODS: Punch biopsies were used to create two full-thickness skin wounds on the back of each mouse. Acute wounds were treated daily with control medium or bone marrow-derived MSC (BM-MSC) CM. The antibiotic mupirocin was administered as a positive control for the MRSA-infected wound experiments. Wounds were photographed daily, and wound images were measured to determine the rate of closure. Trichrome staining was carried out to examine wound tissue histologically, and immunofluorescence antibody binding was used to assess immune cell infiltration. Wounds in the MRSA-infected model were swabbed for quantification of bacterial load.
    RESULTS: Acute wounds treated with BM-MSC CM showed accelerated wound closure compared with controls, as illustrated by enhanced granulation tissue formation and resolution, increased vasculature and regeneration of hair follicles. This treatment also led to increased neutrophil and macrophage infiltration. Chronic MRSA-infected wounds treated with BM-MSC CM showed reduced bacterial load accompanied by better resolution of granulation tissue formation and increased infiltration of pro-healing M2 macrophages compared with control-treated infected wounds.
    CONCLUSIONS: Collectively, our findings indicate that BM-MSC CM exerts pro-healing, immunomodulatory and anti-bacterial effects on wound healing in vivo, validating further exploration of the MSC secretome as a novel treatment option to improve healing of both acute and chronic wounds, especially those infected with antibiotic-resistant bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号