MADS Domain Proteins

MADS 结构域蛋白质类
  • 文章类型: Journal Article
    细胞行为,真核生物的细胞分化和个体发育是表观遗传和经典分子遗传机制之间复杂相互作用的结果,其中许多相互作用仍有待阐明。组蛋白去乙酰化酶(HDAC)通过压缩核小体促进组蛋白与DNA的相互作用,从而导致转录抑制。MADS域转录因子在真核生物中高度保守,参与控制动物和植物的不同发育过程。以及调节植物的应激反应。在这项工作中,我们专注于发现拟南芥HDACs和MADS结构域蛋白的推定相互作用,使用进化的观点结合生物信息学分析,并通过经典的分子生物学工具测试更有希望的预测相互作用。通过生物信息学分析,我们发现了来自不同生物体的HDAC蛋白之间的相似性,这使我们能够预测拟南芥脱乙酰酶HDA15与MADS结构域蛋白XAANTAL1(XAL1)之间的推定蛋白质-蛋白质相互作用。双杂交和双分子荧光互补分析的结果证明了核中的体外和体内HDA15-XAL1相互作用。很可能,这种相互作用可能会调节植物的发育过程,就像动物中这种相互作用一样。
    Cellular behavior, cell differentiation and ontogenetic development in eukaryotes result from complex interactions between epigenetic and classic molecular genetic mechanisms, with many of these interactions still to be elucidated. Histone deacetylase enzymes (HDACs) promote the interaction of histones with DNA by compacting the nucleosome, thus causing transcriptional repression. MADS-domain transcription factors are highly conserved in eukaryotes and participate in controlling diverse developmental processes in animals and plants, as well as regulating stress responses in plants. In this work, we focused on finding out putative interactions of Arabidopsis thaliana HDACs and MADS-domain proteins using an evolutionary perspective combined with bioinformatics analyses and testing the more promising predicted interactions through classic molecular biology tools. Through bioinformatic analyses, we found similarities between HDACs proteins from different organisms, which allowed us to predict a putative protein-protein interaction between the Arabidopsis thaliana deacetylase HDA15 and the MADS-domain protein XAANTAL1 (XAL1). The results of two-hybrid and Bimolecular Fluorescence Complementation analysis demonstrated in vitro and in vivo HDA15-XAL1 interaction in the nucleus. Likely, this interaction might regulate developmental processes in plants as is the case for this type of interaction in animals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    BACKGROUND: Coronary artery disease (CAD) is the most common heart disease worldwide. Association of CAD with variants in the myocyte enhancer factor 2A (MEF2A) gene, the first identified CAD-causing gene, has attracted special attention but the results are controversial. We aimed to evaluate this genetic association via a case-control study and meta-analysis.
    RESULTS: We performed a case-control association study to investigate the relationship between variations in exon 11 of MEF2A gene and CAD in 1045 sporadic patients and 1008 controls enrolled angiographically among southern Chinese population, and then the data from this study were compared and discussed in a systematic review and meta-analysis with all available published studies on MEF2A gene and CAD. In total, eight variants were identified (21-bp deletion, CAG repeats, CCG repeats, a CCA deletion and four SNPs). No significant link was observed between the common (CAG)(n) polymorphism and CAD, whereas the rare 21-bp deletion was detected only in five affected individuals. The meta-analysis of (CAG)(n) polymorphism and CAD risk, including nine studies with 3801 CAD patients and 4020 controls, also provided no convincing evidence for the genetic association, even upon stratification by race (mainly Whites and Chinese). However, the 21-bp deletion was regarded as a potentially logical, albeit undetermined, candidate for CAD in the following systematic review.
    CONCLUSIONS: Our findings failed to demonstrate a correlation between (CAG)(n) polymorphism with CAD, however, we concluded that the rare 21-bp deletion might have a more compelling effect on CAD than the common (CAG)(n) polymorphism, and MEF2A genetic variant might be a rare but specific cause of CAD/MI.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Comparative Study
    Recent investigations on metazoan transcription factors (TFs) indicate that single-gene duplication events and the gain and loss of protein domains are 2 crucial factors in shaping their protein-protein interaction networks. Plant genomes, on the other hand, have a history of polyploidy and whole-genome duplications (WGDs), and thus, their study helps to understand whether WGDs have also had a significant influence on protein network evolution. Here we investigate the evolution of the interaction network in the well-studied MADS domain MIKC-type proteins, a TF family which plays an important role in both the vegetative and the reproductive phases of plant life. We combine phylogenetic reconstruction, protein domain analysis, and interaction data from different species. We show that, unlike previously analyzed interaction networks, the MIKC-type protein network displays a characteristic topology, with overall high inter-subfamily connectivity, shared interactors between paralogs, and conservation of interaction patterns across species. The evaluation of the number of MIKC-type proteins at key time points throughout the evolution of land plants in the lineage leading to Arabidopsis suggested that most duplicates were retained after each round of WGD. We provide evidence that an initial network, formed by 9-11 homodimerizing proteins interacting with each other, existed in the common ancestor of all seed plants. This basic structure has been conserved after each round of WGD, adding layers of paralogs with similar interaction patterns. We thus present the first model where we can show that a network of eukaryotic TFs has evolved via rounds of WGD. Furthermore, we found that in subfamilies in which the K domain is most diverged, the interactions with other subfamilies have been largely lost. We discuss the possibility that such a high proportion of genes were retained after each WGD because of their capacity to form higher order complexes involving proteins from different subfamilies. The simultaneous duplications allowed for the conservation of the quantitative balance between the constituents and facilitated sub- and neofunctionalization through differential expression of whole units.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    We have generated 47 DNA pools and 235 subpools from 21,049 T-DNA insertion lines of rice. DNA pools of 500-1,000 lines were adequate for screening a T-DNA insertion within a 2-kb region. To examine the efficacy of the DNA pools, we selected MADS-box genes, which play an important role in controlling various aspects of plant development. A total of 34 MIKC-type MADS-box genes have now been identified from rice sequence databases. Our PCR screening for T-DNA insertions within 12 MADS-box genes resulted in the identification of five insertions in four different genes. These DNA pools will be valuable when isolating T-DNA insertional mutants in various rice genes. The DNA pool screening service and the mutant seeds are available upon request to genean@postech.ac.kr.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号