Hydroxysteroid Dehydrogenases

羟基类固醇脱氢酶
  • 文章类型: Case Reports
    We reported a patient with Testicular adrenal rest tumors(TARTs) caused by congenital adrenal hyperplasia(CAH). TARTs occur frequently in CAH population with 21-hydroxylase deficiency(21-OHD). There are few reports of TARTs with 3β-hydroxysteroid dehydrogenase deficiency-2 (3β-2HSD).Furthermore,gaint TARTs are rarely mentioned in reported cases involving affected siblings.
    A 14-year-old male patient was admitted by congenital adrenal hyperplasia with progressively increasing bilateral testicular masses.The Patient and his elder brother had been performed mutational and chromosome analysis and biopsy. Hormonal and anthropometric measurements were performed during endocrine treatments. We successfully performed surgery and excised two 83mm×46mm×44mm and 74mm×49mm×31mm tumors. Our pathology and immunochemistry tests have proven TARTs in patient. At first, both siblings received regular doses of hydrocortisone and fludrocortisones and tumor size regressed. During the one-year irregular intake due to Covid-19 pandemic, endocrine treatment became insensitive and tumor size slowly increased. The gene analysis reported two novel mutations C.776 C>T and C.674 T>A. The C.776 C>T is from father and has been reported. The C.674 T>A inherited from mother and cannot found in gene library and may related to TARTs.
    This case illustrates inadequate hormone therapy could cause tumor enlargement. It is essential to seek for ultrasound examination once suspected scrotal mass occurred.It is necessary to adjust endocrine medicine or adopt surgery in refractory gaint TARTs. And presence of tunica vaginalis cavity may indicate the severity of TARTs in surgery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    BACKGROUND: It was reported that steroid-related gene expressions in the adipose tissue (AT) of women differ between women affected with polycystic ovary syndrome (PCOS) and non-PCOS. Although association between PCOS in mother and offspring\'s health is a crucial issue, there are few studies focusing on AT of pregnant women suffering from PCOS. Our objectives were to determine the differences between mRNA expression levels of key steroid-converting enzymes in abdominal subcutaneous AT of pregnant women afflicted with PCOS and non-PCOS.
    METHODS: Twelve pregnant women with PCOS (case) and thirty six non-PCOS pregnant women (control) (1:3 ratio; age- and BMI-matched) undergoing cesarean section were enrolled for the present study. Expressions of fifteen genes related to steriodogenesis in abdominal subcutaneous AT were investigated using quantitative real-time PCR.
    RESULTS: No significant differences were detected with respect to age, BMI (prior pregnancy and at delivery day), gestational period and parity among pregnant women with PCOS and non-PCOS. Most of the sex steroid-converting genes except 17β-Hydroxysteroid dehydrogenases2 (17BHSD2), were highly expressed on the day of delivery in subcutaneous AT. Women with PCOS showed significantly higher mRNA levels of steroidgenic acute regulator (STAR; P < 0.001), cytochrome P450 monooxygenase (CYP11A1; P < 0.05), 17α-hydroxylase (CYP17A1; P < 0.05), and 11β-Hydroxysteroid dehydrogenase (11BHSD1 and 11BHSD2; P < 0.05). The expression of steroid 21-hydroxylase (CYP21) in non-PCOS was fourfold higher than those of women with PCOS (P < 0.001). There were no significant differences between relative expression of aromatase cytochrome P450 (CYP19A1), 3β-hydroxysteroid dehydrogenase (3BHSD1 and 3BHSD2), and 17BHSD family (1, 3, 5, 7, and 12) between the two groups.
    CONCLUSIONS: The expression levels of genes related to sex steroids metabolism were similar to age-matched and BMI- matched pregnant non-PCOS and pregnant women with PCOS at delivery day. However, the alterations in gene expressions involved in glucocorticoids and mineralocorticoids metabolism were shown. It is necessary to point out that further studies regarding functional activity are required. More attention should be given to AT of pregnant women with PCOS that was previously ignored.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物雌激素是在功能上和结构上模拟哺乳动物雌激素的植物衍生化合物。植物雌激素对几种类固醇生成酶具有广泛的抑制活性,如17β-羟基类固醇脱氢酶(17β-HSDs),调节哺乳动物中雄激素和雌激素的生物学效力。然而,到目前为止,没有晶体学数据可以解释植物雌激素与哺乳动物17β-HSD的结合。来自丝状真菌Cochlioboluslunatus(17β-HSDcl)的NADP(H)依赖性17β-HSD一直是广泛的生化研究的主题,动力学和定量结构-活性关系研究表明,黄酮醇是最有效的抑制剂。在本研究中,我们研究了17β-HSDcl的holo形式与山奈酚和3,7-二羟基黄酮之间的三元复合物的构效关系,与异黄酮染料木素和biochaninA相比,晶体学数据伴随着对六种黄酮醇的抑制机制的动力学分析(3-羟基黄酮,3,7-二羟基黄酮,山奈酚,槲皮素,Fisetin,杨梅素),一种黄烷酮(柚皮素),一黄酮(木犀草素),和两种异黄酮(染料木素,biochaninA)。动力学分析表明,环B的羟基化程度显著影响黄酮醇的总体抑制效力。不同的结合模式定义了17β-HSDcl与黄酮和异黄酮之间的相互作用。此外,与biochaninA的复合物揭示了一种异常的结合模式,该模式似乎解释了其对金雀异黄素对17β-HSDcl的更大抑制作用。总的来说,这些数据为鉴定支持植物雌激素抑制17β-HSD的不同分子决定子提供了蓝图。
    Phytoestrogens are plant-derived compounds that functionally and structurally mimic mammalian estrogens. Phytoestrogens have broad inhibitory activities toward several steroidogenic enzymes, such as the 17β-hydroxysteroid dehydrogenases (17β-HSDs), which modulate the biological potency of androgens and estrogens in mammals. However, to date, no crystallographic data are available to explain phytoestrogens binding to mammalian 17β-HSDs. NADP(H)-dependent 17β-HSD from the filamentous fungus Cochliobolus lunatus (17β-HSDcl) has been the subject of extensive biochemical, kinetic and quantitative structure-activity relationship studies that have shown that the flavonols are the most potent inhibitors. In the present study, we investigated the structure-activity relationships of the ternary complexes between the holo form of 17β-HSDcl and the flavonols kaempferol and 3,7-dihydroxyflavone, in comparison with the isoflavones genistein and biochanin A. Crystallographic data are accompanied by kinetic analysis of the inhibition mechanisms for six flavonols (3-hydroxyflavone, 3,7-dihydroxyflavone, kaempferol, quercetin, fisetin, myricetin), one flavanone (naringenin), one flavone (luteolin), and two isoflavones (genistein, biochanin A). The kinetics analysis shows that the degree of hydroxylation of ring B significantly influences the overall inhibitory efficacy of the flavonols. A distinct binding mode defines the interactions between 17β-HSDcl and the flavones and isoflavones. Moreover, the complex with biochanin A reveals an unusual binding mode that appears to account for its greater inhibition of 17β-HSDcl with respect to genistein. Overall, these data provide a blueprint for identification of the distinct molecular determinants that underpin 17β-HSD inhibition by phytoestrogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Case Reports
    The human microsomal 11 beta-hydroxysteroid dehydrogenase type 2 (11 beta HSD2) metabolizes active cortisol into cortisone and protects the mineralocorticoid receptor from glucocorticoid occupancy. In a congenital deficiency of 11 beta-HSD2, the protective mechanism fails and cortisol gains inappropriate access to mineralocorticoid receptor, resulting in low-renin hypertension and hypokalemia. In the present study, we describe the clinical and molecular genetic characterization of a patient with a new mutation in the HSD11B2 gene. This is a 4-yr-old male with arterial hypertension. The plasma renin activity and serum aldosterone were undetectable in the presence of a high cortisol to cortisone ratio. PCR amplification and sequence analysis of HSD11B2 gene showed the homozygous mutation in exon 4 Asp223Asn (GAC-->AAC) and a single nucleotide substitution C-->T in intron 3. Using site-directed mutagenesis, we generated a mutant 11 beta HSD2 cDNA containing the Asp223Asn mutation. Wild-type and mutant cDNA was transfected into Chinese hamster ovary cells and enzymatic activities were measured using radiolabeled cortisol and thin-layer chromatography. The mRNA and 11 beta HSD2 protein were detected by RT-PCR and Western blot, respectively. Wild-type and mutant 11 beta HSD2 protein was expressed in Chinese hamster ovary cells, but the mutant enzyme had only 6% of wild-type activity. In silico 3D modeling showed that Asp223Asn changed the enzyme\'s surface electrostatic potential affecting the cofactor and substrate enzyme-binding capacity. The single substitution C-->T in intron 3 (IVS3 + 14 C-->T) have been previously reported that alters the normal splicing of pre-mRNA, given a nonfunctional protein. These findings may determine the full inactivation of this enzyme, explaining the biochemical profile and the early onset of hypertension seen in this patient.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Case Reports
    This report describes a case of pulmonary epithelioid haemangioendothelioma in which the tumour cells expressed the glucocorticoid receptor and 11beta-hydroxysteroid dehydrogenase. The patient, a 15 year old girl, who had no other complaints or past illnesses, was found to have an abnormal shadow on a chest roentgenogram obtained at a school medical examination. Multiple nodular shadows in the bilateral lungs were also confirmed by computerised axial tomography scan. A diagnosis of pulmonary epithelioid haemangioendothelioma was made on the basis of lung biopsy specimens. The tumour cells were immunohistochemically positive for factor VIII related antigen, CD31, and CD34, but not surfactant apoprotein A. In addition, almost all of the tumour cells showed simultaneous expression of the glucocorticoid receptor and 11beta hydroxysteroid dehydrogenase, suggesting that steroid treatment would be effective.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • DOI:
    文章类型: Case Reports
    The syndrome of apparent mineralocorticoid excess is a recessively inherited form of low renin hypertension. The syndrome is characterised by sodium retention and hypervolemia despite low plasma renin activity and aldosterone levels. Patients with this syndrome have mutations in the 11HSD2 gene which encodes the enzyme which normally converts cortisol in the renal tubule to its inactive form, cortisone. The unconverted cortisol is thus able to bind and activate the mineralocorticoid receptor, displacing its usual ligand, aldosterone, causing the apparent mineralocorticoid excess. We have studied a patient with severe hypertension, low renin and aldosterone, and a chronic hypokalemic alkalosis at age 4. The analysis of cortisone, cortisol and their metabolites showed the specific pattern of the apparent mineralocorticoid excess. In serum and urine, there was a dramatic decrease of cortisone and its metabolite, while cortisol and its metabolites were non affected.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    Apparent mineralocorticoid excess (AME) characterized by early-onset hypertension and hypokalemia is due to congenital deficiency of 11 beta-hydroxysteroid dehydrogenase (11 beta HSD). Two isoforms of human 11 beta HSD are known, and the type 2 isoform (11 beta HSD2) has been recently shown to be responsible for AME. In this study we have analyzed the 11 beta HSD2 gene of a Japanese patient with AME. PCR amplification and subsequent nucleotide sequencing of the 11 beta HSD2 gene from the patient and his family members revealed that the patient has a compound heterozygous mutation of this gene. In 1 allele, an undescribed single nucleotide transition in codon 208 in exon 3 resulted in a substitution of arginine to histidine (CGC to CAC: R208H). In the other allele, a deletion of 3 nucleotides in codons 337-338 in exon 5 resulted in a substitution of arginine to histidine and a deletion of tyrosine residue (CGCTAT to CAT: R337H, delta Y338), which has been previously shown to abolish 11 beta HSD2 enzyme activity. A chloramphenicol acetyltransferase assay-based expression study involving the mineralocorticoid receptor indicated that the novel R208H mutation eliminates the enzymatic activity of 11 beta HSD2. From the genetic analysis of 50 healthy subjects, the novel R208H mutation was unlikely to be due to polymorphism. Together, these results indicate that this patient is a compound heterozygote for the mutation in the 11 beta HSD2 gene (R208H and R337H, delta Y338) and that these mutations inactivate the 11 beta HSD2 function and give rise to clinically manifest AME.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Case Reports
    A personal memoir of the discovery of a new form of hypertension, apparent mineralocorticoid excess, came about through painstaking analysis of the symptoms of a Zuñi Indian girl. The study of this patient opened a new field of receptor biology, i.e. how glucocorticoids and mineralocorticoids interact with receptors. Therefore, the patient was a prismatic case.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • DOI:
    文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号