Hemeproteins

血红素蛋白
  • 文章类型: Journal Article
    Nitrobindins(Nbs)是沿进化阶梯存在的全β桶血红素蛋白。它们显示出高度暴露于溶剂的铁血红素基团,铁原子由近端His残基和远端位置的水分子配位。铁硝基结合素(Nb(III))在将有毒的过氧亚硝酸盐(ONOO-)转化为无害的硝酸盐中发挥作用,二阶速率常数的值与大多数血红素蛋白的值相似。Nbs的二阶速率常数的值随着pH的降低而增加;这表明Nb(III)优先与过氧亚硝酸(ONOOH)反应,虽然ONOO-更亲核。在这项工作中,我们通过解剖配体向活性位点的迁移,阐明了结核分枝杆菌Nb(Mt-Nb(III))的ONOO-和ONOOH反应性的分子基础,水分子的释放,以及通过计算机模拟的配体结合过程。通过采用受控分子动力学方法和Jarzynski等式进行经典分子动力学模拟,以获得ONOO-和ONOOH的配体迁移自由能曲线。我们的结果表明,ONOO-和ONOOH迁移几乎不受阻碍,与Mt-Nb(III)的暴露金属中心一致。为了进一步分析配体结合过程,我们使用DFT水平的混合QM/MM方案和轻推弹性带方法计算了Fe(III)配位水分子位移的势能曲线。这些结果表明,ONOO-对配体置换表现出比ONOOH大得多的屏障,表明进入的ONOOH对离去基团的质子化有助于水的置换。
    Nitrobindins (Nbs) are all-β-barrel heme proteins present along the evolutionary ladder. They display a highly solvent-exposed ferric heme group with the iron atom being coordinated by the proximal His residue and a water molecule at the distal position. Ferric nitrobindins (Nb(III)) play a role in the conversion of toxic peroxynitrite (ONOO-) to harmless nitrate, with the value of the second-order rate constant being similar to those of most heme proteins. The value of the second-order rate constant of Nbs increases as the pH decreases; this suggests that Nb(III) preferentially reacts with peroxynitrous acid (ONOOH), although ONOO- is more nucleophilic. In this work, we shed light on the molecular basis of the ONOO- and ONOOH reactivity of ferric Mycobacterium tuberculosis Nb (Mt-Nb(III)) by dissecting the ligand migration toward the active site, the water molecule release, and the ligand binding process by computer simulations. Classical molecular dynamics simulations were performed by employing a steered molecular dynamics approach and the Jarzynski equality to obtain ligand migration free energy profiles for both ONOO- and ONOOH. Our results indicate that ONOO- and ONOOH migration is almost unhindered, consistent with the exposed metal center of Mt-Nb(III). To further analyze the ligand binding process, we computed potential energy profiles for the displacement of the Fe(III)-coordinated water molecule using a hybrid QM/MM scheme at the DFT level and a nudged elastic band approach. These results indicate that ONOO- exhibits a much larger barrier for ligand displacement than ONOOH, suggesting that water displacement is assisted by protonation of the leaving group by the incoming ONOOH.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已经开发了一种EPR光谱仪,可以将其调谐到大约0.1-15GHz范围内的许多频率。已经在氟化亚铁肌红蛋白(MbF)和氰化亚铁肌红蛋白(MbCN)上测试了适用性。MbF具有高自旋(S=5/2)光谱,具有19F超精细分裂,仅在沿血红素法线的X波段中分辨。低频EPR也解决血红素平面中的分裂。作为频率函数的线宽测量为分析g应变方面的不均匀加宽提供了基础,零场分布,未解决的超精细分裂和偶极相互作用。发现g张量中不存在菱形。MbCN(S=1/2)具有高度各向异性的低自旋(HALS)光谱,无法在X波段明确确定gx。低频EPR允许测量完整的频谱并确定g张量。
    An EPR spectrometer has been developed that can be tuned to many frequencies in the range of ca 0.1-15 GHz. Applicability has been tested on ferrimyoglobin fluoride (MbF) and ferrimyoglobin cyanide (MbCN). MbF has a high-spin (S = 5/2) spectrum with 19F superhyperfine splitting that is only resolved in X-band along the heme normal. Low-frequency EPR also resolves the splitting in the heme plane. Measurement of linewidth as a function of frequency provides the basis for an analysis of inhomogeneous broadening in terms of g-strain, zero-field distribution, unresolved superhyperfine splittings and dipolar interaction. Rhombicity in the g tensor is found to be absent. MbCN (S = 1/2) has a highly anisotropic low spin (HALS) spectrum for which gx cannot be determined unequivocally in X-band. Low-frequency EPR allows for measurement of the complete spectrum and determination of the g-tensor.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Antimalarial drug resistance in the Plasmodium falciparum parasite poses a constant challenge for drug development. To mitigate this risk, new antimalarial medicines should be developed as fixed-dose combinations. Assessing the pharmacodynamic interactions of potential antimalarial drug combination partners during early phases of development is essential in developing the targeted parasitological and clinical profile of the final drug product. Here, we have studied the combination of M5717, a P. falciparum translation elongation factor 2 inhibitor, and pyronaridine, an inhibitor of hemozoin formation. Our test cascade consisted of in vitro isobolograms as well as in vivo studies in the P. falciparum severe combined immunodeficient (SCID) mouse model. We also analyzed pharmacokinetic and pharmacodynamic parameters, including genomic sequencing of recrudescent parasites. We observed no pharmacokinetic interactions with the combination of M5717 and pyronaridine. M5717 did not negatively impact the rate of kill of the faster-acting pyronaridine, and the latter was able to suppress the selection of M5717-resistant mutants, as well as significantly delay the recrudescence of parasites both with suboptimal and optimal dosing regimens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    FixL from Rhizobium etli (ReFixL) is a hybrid oxygen sensor protein. Signal transduction in ReFixL is effected by a switch off of the kinase activity on binding of an oxygen molecule to ferrous heme iron in another domain. Cyanide can also inhibit the kinase activity upon binding to the heme iron in the ferric state. The unfolding by urea of the purified full-length ReFixL in both active pentacoordinate form, met-FixL(FeIII) and inactive cyanomet-FixL (FeIII-CN-) form was monitored by UV-visible absorption spectroscopy, circular dichroism (CD) and fluorescence spectroscopy. The CD and UV-visible absorption spectroscopy revealed two states during unfolding, whereas fluorescence spectroscopy identified a three-state unfolding mechanism. The unfolding mechanism was not altered for the active compared to the inactive state; however, differences in the ΔGH2O were observed. According to the CD results, compared to cyanomet-FixL, met-FixL was more stable towards chemical denaturation by urea (7.2 vs 4.8kJmol-1). By contrast, electronic spectroscopy monitoring of the Soret band showed cyanomet-FixL to be more stable than met-FixL (18.5 versus 36.2kJmol-1). For the three-state mechanism exhibited by fluorescence, the ΔGH2O for both denaturation steps were higher for the active-state met-FixL than for cyanomet-FixL. The overall stability of met-FixL is higher in comparison to cyanomet-FixL suggesting a more compact protein in the active form. Nonetheless, hydrogen bonding by bound cyanide in the inactive state promotes the stability of the heme domain. This work supports a model of signal transduction by FixL that is likely shared by other heme-based sensors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    In the HIV-1 replication cycle, the endosomal sorting complex required for transport (ESCRT) machinery promotes viral budding and release in the late stages. In this process, the ESCRT proteins, ALIX and TSG101, are recruited through interactions with HIV-1 Gag p6. ALG-2, also known as PDCD6, interacts with both ALIX and TSG101 and bridges ESCRT-III and ESCRT-I. In this study, we show that ALG-2 affects HIV-1 production negatively at both the exogenous and endogenous levels. Through a yeast two-hybrid screen, we identified HEBP2 as the binding partner of ALG-2, and we solved the crystal structure of the ALG-2·HEBP2 complex. The function of ALG-2·HEBP2 complex in HIV-1 replication was further explored. ALG-2 inhibits HIV-1 production by affecting Gag expression and distribution, and HEBP2 might aid this process by tethering ALG-2 in the cytoplasm.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Various species of yeasts are gaining attention as producers of nutraceuticals and biofuels and due to their capacity to biodegrade chemical waste. Rhodotorula mucilaginosa is one of the most oleaginous species of yeast, an efficient de novo carotenoid producer and was reported to be capable of decomposing of organic pesticides. In this work we studied the influence of a toxic pesticide, diazinone, on production of storage (lipids) and protective (carotenoids, hemoproteins) compounds by Rh. mucilaginosa alive cells with the help of Raman imaging. It occurred that the yeast in non-oleaginous phase and aerobic environment was rich in carotenoids and their level increased significantly under incubation with diazinone, while anaerobic environment resulted in production of both carotenoids and hemoproteins and the level of the latter decreased under the influence of the pesticide. For yeasts in oleaginous phase, it was concluded that lipid production (via triggering of NAD+ accumulation and increase of the NO level) resulted in nitrosative stress leading to flavohemoprotein synthesis and was associated with the increase of the mitochondrial activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    CooA is a CO-sensing transcriptional activator from the photosynthetic bacterium Rhodospirillum rubrum that binds CO at the heme iron. The heme iron in ferrous CooA has two axial ligands: His77 and Pro2. CO displaces Pro2 and induces a conformational change in CooA. The dissociation of CO and/or ligation of the Pro2 residue are believed to trigger structural changes in the protein. Visible time-resolved resonance Raman spectra obtained in this study indicated that the ν(Fe-His) mode, arising from the proximal His77-iron stretch, does not shift until 50 μs after the photodissociation of CO. Ligation of the Pro2 residue to the heme iron was observed around 50 μs after the photodissociation of CO, suggesting that the ν(Fe-His) band exhibits no shift until the ligation of Pro2. UV resonance Raman spectra suggested structural changes in the vicinity of Trp110 in the C-helix upon CO binding, but no or very small spectral changes in the time-resolved UV resonance Raman spectra were observed from 100 ns to 100 μs after the photodissociation of CO. These results strongly suggest that the conformational change of CooA is induced by the ligation of Pro2 to the heme iron.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Comparative Study
    A heme-protein cross-link is a key post-translational modification (PTM) of heme proteins. Meanwhile, the structural and functional consequences of heme-protein cross-links are not fully understood, due to limited studies on a direct comparison of the same protein with and without the cross-link. A Tyr-heme cross-link with a C-O bond is a newly discovered PTM of heme proteins, and is spontaneously formed in F43Y myoglobin (Mb) between the Tyr hydroxyl group and the heme 4-vinyl group in vivo. In this study, we found that with an additional distal His29 introduced in the heme pocket, the double mutant L29H/F43Y Mb can form two distinct forms under different protein purification conditions, with and without a novel Tyr-heme cross-link. By solving the X-ray structures of both forms of L29H/F43Y Mb and performing spectroscopic studies, we made a direct structural and functional comparison in the same protein scaffold. It revealed that the Tyr-heme cross-link regulates the heme distal hydrogen-bonding network, and fine-tunes not only the spectroscopic and ligand binding properties, but also the protein reactivity. Moreover, the formation of the Tyr-heme cross-link in the double mutant L29H/F43Y Mb was investigated in vitro. This study addressed the key issue of how Tyr-heme cross-link fine-tunes the structure and functions of the heme protein, and provided a plausible mechanism for the formation of the newly discovered Tyr-heme cross-link.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Specific isotopic labeling of hemes provides a unique opportunity to characterize the structure and function of heme-proteins. Unfortunately, current methods do not allow efficient labeling in high yields of multiheme cytochromes c, which are of great biotechnological interest. Here, a method for production of recombinant multiheme cytochromes c in Escherichia coli with isotopically labeled hemes is reported. A small tetraheme cytochrome of 12 kDa from Shewanella oneidensis MR-1 was used to demonstrate the method, achieving a production of 4 mg pure protein per liter. This method achieves, in a single step, efficient expression and incorporation of hemes isotopically labeled in specific atom positions adequate for spectroscopic characterization of these complex heme proteins. It is, furthermore, of general application to heme proteins, opening new possibilities for the characterization of this important class of proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Dye-decolorizing peroxidase (DyP) of Auricularia auricula-judae has been expressed in Escherichia coli as a representative of a new DyP family, and subjected to mutagenic, spectroscopic, crystallographic and computational studies. The crystal structure of DyP shows a buried haem cofactor, and surface tryptophan and tyrosine residues potentially involved in long-range electron transfer from bulky dyes. Simulations using PELE (Protein Energy Landscape Exploration) software provided several binding-energy optima for the anthraquinone-type RB19 (Reactive Blue 19) near the above aromatic residues and the haem access-channel. Subsequent QM/MM (quantum mechanics/molecular mechanics) calculations showed a higher tendency of Trp-377 than other exposed haem-neighbouring residues to harbour a catalytic protein radical, and identified the electron-transfer pathway. The existence of such a radical in H₂O₂-activated DyP was shown by low-temperature EPR, being identified as a mixed tryptophanyl/tyrosyl radical in multifrequency experiments. The signal was dominated by the Trp-377 neutral radical contribution, which disappeared in the W377S variant, and included a tyrosyl contribution assigned to Tyr-337 after analysing the W377S spectra. Kinetics of substrate oxidation by DyP suggests the existence of high- and low-turnover sites. The high-turnover site for oxidation of RB19 (k(cat) > 200 s⁻¹) and other DyP substrates was assigned to Trp-377 since it was absent from the W377S variant. The low-turnover site/s (RB19 k(cat) ~20 s⁻¹) could correspond to the haem access-channel, since activity was decreased when the haem channel was occluded by the G169L mutation. If a tyrosine residue is also involved, it will be different from Tyr-337 since all activities are largely unaffected in the Y337S variant.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号