Genomic Islands

基因组岛
  • 文章类型: Journal Article
    背景:尿路感染(UTI)是最常见的细菌感染性疾病之一,可导致相当大的发病率和昂贵的健康问题。尿路致病性大肠杆菌(UPEC),引起UTI的最常见病原体,是一组高度异质性的肠外致病性大肠杆菌(ExPEC),可能携带多种毒力因子,属于不同的系统发育背景。本研究旨在调查各种毒力因子(VFs)与UPEC和共生分离株的系统发育群体之间的频率和关联。
    方法:比较了从健康人类UTI和粪便中分离的UPEC和共生大肠杆菌菌株的VF和系统发育群的存在。研究了毒力基因之间的关联,并采用聚类分析。
    结果:根据结果,在测试的30个毒力标记中,致病性相关岛(PAI),爸爸,papEF,FIMH,fyuA,和traT基因患病率在UPEC分离株中具有统计学意义。在B2和D系统发育组和UPEC的临床分离株之间发现了很强的关联;而,共生分离株主要与系统发育组A相关。与共生分离株相比,UPEC分离株的总VFs得分高出两倍以上。有趣的是,在UPEC和共生分离株中,B2组的VF评分最高.在几个毒力基因之间发现了很强的正相关。聚类结果表明,由于其毒力基因库和致病性岛的组成不同,UPEC或共生大肠杆菌分离株具有高度异质性。
    结论:UPEC菌株的遗传结构和VFs因地区而异;因此,为了控制UTI,需要在不同地区调查UPEC分离株的流行病学方面和特征。由于UPEC分离株通常来自共生菌株,通过干扰肠道定植来减少UTI负担可能是可行的,特别是在高致病性克隆谱系如B2中。
    BACKGROUND: Urinary Tract Infection (UTI) is one of the most common bacterial infectious diseases which causes considerable morbidity and costly health problems. Uropathogenic Escherichia coli (UPEC), the most common pathogen causing UTI, is a highly heterogeneous group of extraintestinal pathogenic E. coli (ExPEC) which may carry a variety of virulence factors and belonging to different phylogenetic backgrounds. The current study aimed to investigate the frequency and association between various virulence factors (VFs) and phylogenetic groups of UPEC and commensal isolates.
    METHODS: UPEC and commensal E. coli strains isolated from UTI and feces of healthy humans were compared for the presence of VFs and phylogenetic groups. Association between virulence genes was investigated and cluster analysis was employed.
    RESULTS: According to the results, among a 30 virulence markers tested, the pathogenicity-associated island (PAI), papAH, papEF, fimH, fyuA, and traT genes prevalence were statistically significant in UPEC isolates. A strong association was found between the B2 and D phylogenetic groups and clinical isolates of UPEC; while, commensal isolates were mostly associated with phylogenetic group A. The aggregated VFs scores were more than twice higher in the UPEC isolates in comparison with the commensal isolates. Interestingly, the B2 group in both UPEC and commensal isolates had the highest VF scores. A strong positive association was found between several virulence genes. The clustering results demonstrated that UPEC or commensal E. coli isolates were highly heterogeneous due to different composition of their virulence gene pool and pathogenicity islands.
    CONCLUSIONS: Genetic structure and VFs of UPEC strains vary from region to region; therefore, to control the UTI, the epidemiological aspects and characterization of the UPEC isolates need to be investigated in different regions. Since UPEC isolates are generally originate from the commensal strains, it may be feasible to reduce the UTI burden by interfering the intestinal colonization, particularly in the highly pathogenic clonal lineages such as B2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The genus Escherichia is composed of several species and cryptic clades, including E. coli, which behaves as a vertebrate gut commensal, but also as an opportunistic pathogen involved in both diarrheic and extra-intestinal diseases. To characterize the genetic determinants of extra-intestinal virulence within the genus, we carried out an unbiased genome-wide association study (GWAS) on 370 commensal, pathogenic and environmental strains representative of the Escherichia genus phylogenetic diversity and including E. albertii (n = 7), E. fergusonii (n = 5), Escherichia clades (n = 32) and E. coli (n = 326), tested in a mouse model of sepsis. We found that the presence of the high-pathogenicity island (HPI), a ~35 kbp gene island encoding the yersiniabactin siderophore, is highly associated with death in mice, surpassing other associated genetic factors also related to iron uptake, such as the aerobactin and the sitABCD operons. We confirmed the association in vivo by deleting key genes of the HPI in E. coli strains in two phylogenetic backgrounds. We then searched for correlations between virulence, iron capture systems and in vitro growth in a subset of E. coli strains (N = 186) previously phenotyped across growth conditions, including antibiotics and other chemical and physical stressors. We found that virulence and iron capture systems are positively correlated with growth in the presence of numerous antibiotics, probably due to co-selection of virulence and resistance. We also found negative correlations between virulence, iron uptake systems and growth in the presence of specific antibiotics (i.e. cefsulodin and tobramycin), which hints at potential \"collateral sensitivities\" associated with intrinsic virulence. This study points to the major role of iron capture systems in the extra-intestinal virulence of the genus Escherichia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    BACKGROUND: Genomic islands (GIs) are discrete segments of mobile DNA with defined boundaries according to recent patents, acquired in the bacterial genome from another organism by horizontal gene transfer during the course of evolution. GIs contribute significantly to virulence, disease development, antimicrobial resistance and metabolic process.
    OBJECTIVE: The present study focuses on the development of a vector based genetic tool carrying selectable and counter-selectable markers, in order to flag the GIs in the bacterial chromosome and monitor their stability under in vitro and in vivo conditions.
    METHODS: We engineered suicide vectors, pSB40 and pSB41, carrying single or tandem copies of chloramphenicol acetyltransferase (cat) and levansucrase (sacB) alleles, respectively. The sacB-cat allele in both the vectors is flanked by several restriction sites. To test the suitability of sacB-cat allele for monitoring GI loss, we introduced the allele in the Vibrio Pathogenicity Island-1 (VPI-1) in Vibrio cholerae genome.
    RESULTS: The V. cholerae strain carrying sacB-cat allele in VPI-1 element showed resistance to chloramphenicol and sensitivity to sucrose at optimal growth conditions. Loss of VPI-1 element from the V. cholerae genome was simply monitored by growing the cells on selection agar plates supplemented with sucrose. Our results showed that the genetic tool we developed is suitable for monitoring GI stability in the bacterial genome.
    CONCLUSIONS: The present study indicates that pSB40 and pSB41are efficient and sensitive genetic tool that can be used for reverse genetics experiments and monitoring stability of mobile genetic elements in the bacterial genome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Clostridium difficile, the etiological agent of Clostridium difficile infection (CDI), is a gram-positive, spore-forming bacillus that is responsible for ∼20% of antibiotic-related cases of diarrhea and nearly all cases of pseudomembranous colitis. Previous data have shown that a substantial proportion (11%) of the C. difficile genome consists of mobile genetic elements, including seven conjugative transposons. However, the mechanism underlying the formation of a mosaic genome in C. difficile is unknown. The type-IV secretion system (T4SS) is the only secretion system known to transfer DNA segments among bacteria. We searched genome databases to identify a candidate T4SS in C. difficile that could transfer DNA among different C. difficile strains. All T4SS gene clusters in C. difficile are located within genomic islands (GIs), which have variable lengths and structures and are all conjugative transposons. During the horizontal-transfer process of T4SS GIs within the C. difficile population, the excision sites were altered, resulting in different short-tandem repeat sequences among the T4SS GIs, as well as different chromosomal insertion sites and additional regions in the GIs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    WGS and phenotypic methods were used to determine the prevalence of azithromycin resistance in Salmonella enterica isolates from the UK and to identify the underlying mechanisms of resistance.
    WGS by Illumina HiSeq was carried out on 683 Salmonella spp. isolates. Known genes associated with azithromycin resistance were detected by WGS using a mapping-based approach. Macrolide resistance determinants were identified and the genomic context of these elements was assessed by various bioinformatics tools. Susceptibility testing was in accordance with EUCAST methodology (MIC ≤16 mg/L).
    Fifteen isolates of non-typhoidal Salmonella enterica belonging to serovars Salmonella Blockley, Salmonella Typhimurium, Salmonella Thompson, Salmonella Ridge and Salmonella Kentucky showed resistance or decreased susceptibility to azithromycin (from 6 to >16 mg/L) due to the presence of macrolide resistance genes mphA, mphB or mefB. These genes were either plasmid or chromosomally mediated. Azithromycin-resistant Salmonella Blockley isolates harboured a macrolide inactivation gene cluster, mphA-mrx-mphr(A), within a novel Salmonella azithromycin resistance genomic island (SARGI) determined by MinION sequencing. This is the first known chromosomally mediated mphA gene cluster described in salmonellae. Phylogenetic analysis and epidemiological information showed that mphA Salmonella Blockley isolates were not derived from a single epidemiologically related event. The azithromycin MICs of the 15 Salmonella spp. isolates showed that the presence of the mphA gene was associated with MIC ≥16 mg/L, while the presence of mefB or mphB was not.
    Azithromycin resistance due to acquisition of known macrolide resistance genes was seen in four different Salmonella serovars and can be either plasmid-encoded or chromosomally encoded.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    AMPylation is a novel post-translational modification (PTM) involving covalent attachment of an AMP moiety to threonine/tyrosine side chains of a protein. AMPylating enzymes belonging to three different families, namely Fic/Doc, GS-ATase and DrrA have been experimentally characterized. Involvement of these novel enzymes in a myriad of biological processes makes them interesting candidates for genome-wide search. We have used SVM and HMM to develop a computational protocol for identification of AMPylation domains and their classification into various functional subfamilies catalyzing AMPylation, deAMPylation, phosphorylation and phosphocholine transfer. Our analysis has not only identified novel PTM catalyzing enzymes among unannotated proteins, but has also revealed how this novel enzyme family has evolved to generate functional diversity by subtle changes in sequence/structures of the proteins. Phylogenetic analysis of Fic/Doc has revealed three new isofunctional subfamilies, thus adding to their functional divergence. Also, frequent occurrence of Fic/Doc proteins on highly mobile and unstable genomic islands indicated their evolution via extensive horizontal gene transfers. On the other hand phylogenetic analyses indicate lateral evolution of GS-ATase family and an early duplication event responsible for AMPylation and deAMPylation activity of GS-ATase. Our analysis also reveals molecular basis of substrate specificity of DrrA proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Cholera is still a major public health concern in many African countries. In Angola, after a decade of absence, cholera reemerged in 1987, spreading throughout the country until 1996, with outbreaks recurring in a seasonal pattern. In 2006 Angola was hit by one of the most severe outbreaks of the last decade, with ca. 240,000 cases reported. We analyzed 21 clinical strains isolated between 1992 and 2006 from several provinces throughout the country: Benguela, Bengo, Luanda, Cuando Cubango, and Cabinda. We used two multiplex PCR assays to investigate discriminatory mobile genetic elements (MGE) [Integrative Conjugative Elements (ICEs), VSP-II, GI12, GI14, GI15, K, and TLC phages] and we compared the profiles obtained with those of different reference V. cholerae O1 variants (prototypical, altered, and hybrid), responsible for the ongoing 7th pandemic. We also tested the strains for the presence of specific VSP-II variants and for the presence of a genomic island (GI) (WASA-1), correlated with the transmission of seventh pandemic cholera from Africa to South America. Based on the presence/absence of the analyzed genetic elements, five novel profiles were detected in the epidemic strains circulating in the 1990s. The most frequent profiles, F and G, were characterized by the absence of ICEs and the three GIs tested, and the presence of GI WASA-1 and the WASA variant of the VSP-II island. Our results identified unexpected variability within the 1990s epidemic, showing different rearrangements in a dynamic part of the genome not present in the prototypical V. cholerae O1 N16961. Moreover the 2006 strains differed from the current pandemic V. cholerae O1 strain. Taken together, our results highlight the role of horizontal gene transfer (HGT) in diversifying the genetic background of V. cholerae within a single epidemic.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The purpose of this study was to characterise 172 Salmonella Typhimurium isolates taken from the pork chain for their biofilm forming abilities and to analyse their potential to survive on food processing surfaces. Many Salmonella have the ability to form biofilms. These natural structures, elaborated by bacteria are important in food production because their formation contributes to bacterial survival. Adherent bacterial cells are more resilient to displacement strategies including physical and chemical procedures as a consequence of their altered more resistant phenotype. By improving our understanding of the nature of biofilms, this data could positively contribute to the development and implementation of eradication strategies. In this study, Salmonella Typhimurium DT104 and DT104b were investigated for their ability to form biofilms on a range of different surfaces under defined environmental growth conditions. Phenotypic characterisation involved examining colony morphology on indicator agars, assessing their ability to survive chlorine-based challenges and investigating their ability to attach to stainless steel and to plastic surfaces. All bacterial isolates were investigated for the presence of Salmonella genomic island I (SGI1) which is thought to enhance efficient biofilm formation. It was found that the majority of strains possess biofilm forming capabilities but successful attachment is highly dependent on the surface on which the biofilm is forming. The strains readily attached to stainless steel and plastic surfaces and survived high chlorine concentrations. Molecular and phenotypic comparisons of strong and weak biofilm forming strains indicate that biofilm development is not solely dependent on the acquirement of SGI1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • DOI:
    文章类型: Journal Article
    OBJECTIVE: PCR-genotyping of Vibrio parahaemolyticus strains that had caused sporadic diseases in Novorossiysk from 1973 to 1976.
    METHODS: 24 clinical strains of V. parahaemolyticus isolated in Novorossiysk, most of which belonged to serogroups O4:K12 and O4:K8; 10 O3:K6 strains--causative agents of gastroenteritis outbreak in Vladivostok (1997) and 3 from Japan (1971) were used. PCR genotyping was performed by a set of marker genes of 7 pathogenicity islands (VPaI-1 - VPaI-7) and a number of other pathogenicity factors.
    RESULTS: All the strains isolated in 1970s differed significantly by sets of VPaI marker genes. In contrast to causative agents of outbreak in Vladivostok that contain all 7 VPaI genes (that is, members of the pandemic group that had spread globally since 1996) none of the O4:K12 and O4:K8 Novorossiysk strains contained the full set of all the VPaI genes. However this set was distributed among the members of the group.
    CONCLUSIONS: Taking into account that O4:K12 and O4:K8 serogroups are considered by a number of authors as O3:K6 serovariants, PCR-screening data obtained by us allows to assume that horizontal transfer of mobile elements (VPaI) between strains circulating in the region could have led to the formation of pandemic clones already in the 1970s. This implies that in several coastal regions in certain periods of time conditions that favor these process may form, and risk of infection with pandemic clones is associated not only with import of seafood.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Comparative Study
    Corynebacterium diphtheriae is one of the most prominent human pathogens and the causative agent of the communicable disease diphtheria. The genomes of 12 strains isolated from patients with classical diphtheria, endocarditis, and pneumonia were completely sequenced and annotated. Including the genome of C. diphtheriae NCTC 13129, we herewith present a comprehensive comparative analysis of 13 strains and the first characterization of the pangenome of the species C. diphtheriae. Comparative genomics showed extensive synteny and revealed a core genome consisting of 1,632 conserved genes. The pangenome currently comprises 4,786 protein-coding regions and increases at an average of 65 unique genes per newly sequenced strain. Analysis of prophages carrying the diphtheria toxin gene tox revealed that the toxoid vaccine producer C. diphtheriae Park-Williams no. 8 has been lysogenized by two copies of the ω(tox)(+) phage, whereas C. diphtheriae 31A harbors a hitherto-unknown tox(+) corynephage. DNA binding sites of the tox-controlling regulator DtxR were detected by genome-wide motif searches. Comparative content analysis showed that the DtxR regulons exhibit marked differences due to gene gain, gene loss, partial gene deletion, and DtxR binding site depletion. Most predicted pathogenicity islands of C. diphtheriae revealed characteristics of horizontal gene transfer. The majority of these islands encode subunits of adhesive pili, which can play important roles in adhesion of C. diphtheriae to different host tissues. All sequenced isolates contain at least two pilus gene clusters. It appears that variation in the distributed genome is a common strategy of C. diphtheriae to establish differences in host-pathogen interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号