Genome, Protozoan

  • 文章类型: Journal Article
    The Trypanosomatid family are a diverse and widespread group of protozoan parasites that belong to the higher order class Kinetoplastida. Containing predominantly monoxenous species (i.e. those having only a single host) that are confined to invertebrate hosts, this class is primarily known for its pathogenic dixenous species (i.e. those that have two hosts), serving as the aetiological agents of the important neglected tropical diseases including leishmaniasis, American trypanosomiasis (Chagas disease) and human African trypanosomiasis. Over the past few decades, a multitude of studies have investigated the diversity, classification and evolutionary history of the trypanosomatid family using different approaches and molecular targets. The mitochondrial-like DNA of the trypanosomatid parasites, also known as the kinetoplast, has emerged as a unique taxonomic and diagnostic target for exploring the evolution of this diverse group of parasitic eukaryotes. This review discusses recent advancements and important developments that have made a significant impact in the field of trypanosomatid systematics and diagnostics in recent years.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    BACKGROUND: In 2017, nearly 80% of malaria morbidity and mortality occurred in sub-Saharan African (SSA) countries and India. Rapid diagnostic tests (RDTs), especially those targeting histidine-rich protein 2 (PfHRP2) of Plasmodium falciparum, have become an important diagnostic tool in these malaria-endemic areas. However, the chances of RDT-oriented successful treatment are increasingly jeopardized by the appearance of mutants with deletions in pfhrp2 and pfhrp3 genes. This systematic review and meta-analysis determines the prevalence of field P. falciparum isolates with deletion in pfhrp2 and/or pfhrp3 genes and their proportion among false-negative results in the PfHRP2-based RDTs in SSA and India.
    METHODS: Eight electronic databases were used for searching potentially relevant publications for the systematic review analysis, wherein the main methodological aspects of included studies were analysed and some missing links in the included studies were identified.
    RESULTS: A total of 19 studies were included, 16 from SSA and 3 from India. The pooled prevalence of pfhrp2 deletions was 8 and 5% while 16 and 4% for pfhrp3 gene deletions in Africa and India, respectively. The pooled proportion of pfhrp2 gene deletions found among false negative PfHRP2-based RDTs results was about 27.0 and 69.0% in Africa and India, respectively.
    CONCLUSIONS: This review study indicates a relatively high proportion of both pfhrp2/3 genes deletions in P. falciparum isolates and among false-negative malaria cases using PfHRP2-based RDT results in SSA and India. Recently the deletions in pfhrp2/3 genes have also been reported from two African countries (Nigeria and Sudan). This review emphasizes the importance of more extensive studies and standardization of studies addressing the pfhrp2/3 gene deletions in malarious areas.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    CRISPR-Cas系统,最初被鉴定为原核防御机制,越来越多地用于基因功能研究。这项技术,这很简单,廉价高效,自发现以来,引起了科学界的极大热情,每个月都有许多出版物来自非常不同的社区,报告CRISPR-Cas9的使用情况。目前,没有疫苗来控制由锥虫引起的被忽视的热带病(NTDs),特别是人类非洲锥虫病(HAT)和动物非洲锥虫病(AAT),和治疗麻烦,有时不够有效。CRISPR-Cas9具有功能分析可用于治疗和疫苗目的的新靶分子的潜力。在这次审查中,在简要描述了CRIPSR-Cas9的历史及其工作原理之后,在疾病上的不同应用,尤其是寄生虫病,被审查。然后,我们将重点放在CRISPR-Cas9编辑对锥虫寄生虫的使用上,NTD的病原体,这对热带地区的人类来说仍然是一个可怕的负担,和他们的载体。
    The CRISPR-Cas system, which was originally identified as a prokaryotic defense mechanism, is increasingly being used for the functional study of genes. This technology, which is simple, inexpensive and efficient, has aroused a lot of enthusiasm in the scientific community since its discovery, and every month many publications emanate from very different communities reporting on the use of CRISPR-Cas9. Currently, there are no vaccines to control neglected tropical diseases (NTDs) caused by Trypanosomatidae, particularly Human African Trypanosomiasis (HAT) and Animal African Trypanosomoses (AAT), and treatments are cumbersome and sometimes not effective enough. CRISPR-Cas9 has the potential to functionally analyze new target molecules that could be used for therapeutic and vaccine purposes. In this review, after briefly describing CRIPSR-Cas9 history and how it works, different applications on diseases, especially on parasitic diseases, are reviewed. We then focus the review on the use of CRISPR-Cas9 editing on Trypanosomatidae parasites, the causative agents of NTDs, which are still a terrible burden for human populations in tropical regions, and their vectors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Historical Article
    This paper is a review of current knowledge on Neospora caninum in the context of other apicomplexan parasites and with an emphasis on: life cycle, disease, epidemiology, immunity, control and treatment, evolution, genomes, and biological databases and web resources. N. caninum is an obligate, intracellular, coccidian, protozoan parasite of the phylum Apicomplexa. Infection can cause the clinical disease neosporosis, which most notably is associated with abortion in cattle. These abortions are a major root cause of economic loss to both the dairy and beef industries worldwide. N. caninum has been detected in every country in which a study has been specifically conducted to detect this parasite in cattle. The major mode of transmission in cattle is transplacental (or vertical) transmission and several elements of the N. caninum life cycle are yet to be studied in detail. The outcome of an infection is inextricably linked to the precise timing of the infection coupled with the status of the immune system of the dam and foetus. There is no community consensus as to whether it is the dam\'s pro-inflammatory cytotoxic response to tachyzoites that kills the foetus or the tachyzoites themselves. From economic analysis the most cost-effective approach to control neosporosis is a vaccine. The perfect vaccine would protect against both infection and the clinical disease, and this implies a vaccine is needed that can induce a non-foetopathic cell mediated immunity response. Researchers are beginning to capitalise on the vast potential of -omics data (e.g. genomes, transcriptomes, and proteomes) to further our understanding of pathogens but especially to identify vaccine and drug targets. The recent publication of a genome for N. caninum offers vast opportunities in these areas.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Trypanosoma cruzi, a protozoan parasite that causes Chagas disease, exhibits unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes, RNA editing and trans-splicing. In the absence of mechanism controlling transcription initiation, organized subsets of T. cruzi genes must be post-transcriptionally co-regulated in response to extracellular signals. The mechanisms that regulate stage-specific gene expression in this parasite have become much clearer through sequencing its whole genome as well as performing various proteomic and microarray analyses, which have demonstrated that at least half of the T. cruzi genes are differentially regulated during its life cycle. In this review, we attempt to highlight the recent advances in characterising cis and trans-acting elements in the T. cruzi genome that are involved in its post-transcriptional regulatory machinery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    With the recently sequenced Babesia bovis genome, a large pool of genes with unknown function was identified. The ability to complement and knock-out both unknown and previously identified genes would be a valuable tool to better understand gene function in B. bovis parasites. This review describes recent advances in the development of transient and stable transfection systems for B. bovis. Transient transfection constructs were initially generated using the promoter and the 3\' region of the rap-1 genes of B. bovis controlling expression of luciferase as a reporter. Successful expression of luciferase in B. bovis parasites using this plasmid introduced by classic electroporation of B. bovis infected erythrocytes was followed by the identification and characterization of stronger promoters, such as the ef-1alpha promoter, using transient transfection techniques. Further refinement of the transient transfection technique included development of the ability to transfect free merozoites using nucleofection, an alternative method to electroporation that results in higher transfection yields and improved viability of transfected parasites. Availability of the transient transfection system was critical for the further development of a stable transfection technique using a plasmid designed to target integration of a gfp-bsd gene into the B. bovisef-1alpha locus. Several parasite lines resistant to the anti-babesial drug blasticidin (bsd) and constitutively expressing the gfp-bsd gene were generated after transfection. Integration of the gfp-bsd cassette into the genome was demonstrated by Southern blot and sequence analysis. Taken together these experiments demonstrated the feasibility to introduce, integrate and express exogenous genes in B. bovis. The stable transfection protocol was reproducible and used to transfect at least two distinct B. bovis strains. Further development of these transfection systems will facilitate functional analysis of B. bovis genes and will improve our understanding of the biology of and immunological response to this parasite.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Over 300 million cases of malaria each year cause significant morbidity and mortality. Growing drug-resistance among the Plasmodia that cause malaria motivates the development of additional anti-malarial drugs. This review summarizes the current state of knowledge about potential drug targets for malaria. The recently sequenced malaria genome data clarifies parasite metabolic pathways, and more metabolic targets have been identified.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    A landmark decision was taken in 2002 by the Biotechnology and Biological Sciences Research Council (BBSRC) in the UK to fund the genome sequencing of an eimerian (apicomplexan) parasite from the fowl. The project is a joint collaboration between the Institute for Animal Health (IAH) at Compton, UK and the Wellcome Trust Sanger Institute, Cambridge, UK (see http://www.sanger.ac.uk/Projects/E_tenella/ and http://www.iah.bbsrc.ac.uk/eimeria/). The species chosen, Eimeria tenella, is the best known member of the genus and the Houghton (H) strain is one of the most widely studied. The H strain was isolated in 1949 in the UK. It was maintained initially at the Houghton Poultry Research Station (HPRS), Houghton, and, following closure of that laboratory in 1992, thereafter at the IAH in Compton. At various times the parasite has been provided to other institutions and research groups carrying out coccidiosis research in the fowl. The H strain has been utilised in many fundamental studies on the eimerian life cycle and its relationship with the host. It has also been used to investigate the nature of drug resistance, and to derive attenuated lines-one of which, a \"precocious line\", is a component of a multivalent live attenuated coccidiosis vaccine (Paracox vaccine, Schering-Plough Animal Health). In this article, some immunological, epidemiological, genetic, and chemotherapeutic investigations with the H strain are reviewed, a summary is provided of the biological characteristics of the parasite and some of the core methods used to prepare purified extracellular life cycle stages for experimental studies or passage are given.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    This paper aims to review the applications of the polymerase chain reaction (PCR) for the detection and identification of trypanosomes in animals. The diagnosis of trypanosomes, initially based on microscopic observations and the host range of the parasites, has been improved, since the 1980s, by DNA-based identification. These diagnostic techniques evolved successively through DNA probing, PCR associated to DNA probing, and currently to PCR alone. Several DNA sequences have been investigated as possible targets for diagnosis, especially multi-copy genes such as mini-exon, kinetoplastid mini-circles, etc., but the most favoured target is the nuclear satellite DNA of mini-chromosomes, which presents the advantages, and the drawbacks, of highly repetitive short sequences (120-600 bp). Several levels of specificity have been achieved from sub-genus to species, sub-species and even types. Random priming of trypanosome DNA has even allowed \"isolate specific\" identification. Other work based on microsatellite sequences has provided markers for population genetic studies. For regular diagnosis, the sensitivity of PCR has increased with the advancement of technologies for sample preparation, to reach a level of 1 trypanosome/ml of blood, which has brought to field samples a sensitivity two to three times higher than microscopic observation of the buffy coat. Similarly, PCR has allowed an increase in the specificity and sensitivity of diagnosis in vectors such as tsetse flies. However, because of the diversity of Trypanosoma species potentially present in a single host, PCR diagnosis carried out on host material requires several PCR reactions; for example, in cattle, up to five reactions per sample may be required. Research is now focusing on a diagnosis based on the amplification of the internal transcribed spacer-1 (ITS-1) of ribosomal DNA which presents the advantages of being a multi-copy locus (100-200), having a small size (300-800 bp), which varies from one taxon to another but is conserved in size in a given taxon. This may lead to the development of a multi-species-specific diagnostic protocol using a single PCR. By reducing the cost of the PCR diagnosis, this technique would allow a greater number of field samples to be tested in epidemiological studies and/or would increase the variety of Trypanosoma species that could be detected. Further investigations are required to develop and optimise multi-species-specific diagnostic tools for trypanosomes, which could also serve as a model for such tools in other pathogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • DOI:
    文章类型: Journal Article
    Our research work group has been interested in the study of the ribosomal RNA and 5S gene systems from Trypanosoma cruzi. Our contributions span from the general description of a multifragmented molecular system, to the sequence analysis of some ribosomal RNA coding regions. From the latter, we have constructed phylogenetic trees of the Trypanosomatidae family, and our data indicate that the molecular inferences do not sustain the traditional classification of these species. Our published findings are here reviewed along with recent unpublished observations of ribosomal RNA and 5S gene structures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号