Genes, Fungal

基因,真菌
  • 文章类型: Case Reports
    BACKGROUND: The genus Blastobotrys consists of at least 20 species. Disease in humans has been reported with B adeninivorans, B raffinosifermentans, B proliferans and B serpentis, mostly in immunocompromised patients and those with cystic fibrosis.
    OBJECTIVE: We report a lung infection secondary to B raffinosifermentans in a cystic fibrosis patient successfully treated with isavuconazole and review the literature of invasive infections caused this genus. We also evaluated clinical isolates in our laboratory for species identification and antifungal susceptibility.
    METHODS: Phylogenetic analysis was performed on a collection of 22 Blastobotrys isolates in our reference laboratory, and antifungal susceptibility patterns were determined for nine clinically available antifungals against 19 of these isolates.
    RESULTS: By phylogenetic analysis, 21 of the 22 isolates in our collection were identified as B raffinosifermentans and only 1 as B adeninivorans. Most were cultured from the respiratory tract, although others were recovered from other sources, including CSF and blood. Isavuconazole, caspofungin and micafungin demonstrated the most potent in vitro activity, followed by amphotericin B. In contrast, fluconazole demonstrated poor activity. The patient in this case responded to isavuconazole treatment for breakthrough infection due to B raffinosifermentans that was cultured from pleural fluid while on posaconazole prophylaxis post-bilateral lung transplantation for cystic fibrosis.
    CONCLUSIONS: Blastobotrys species are rare causes of infections in humans and primarily occur in immunocompromised hosts. In our collection, the majority of isolates were identified as B raffinosifermentans. To our knowledge, this is the first report of successful treatment of such an infection with isavuconazole.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Filamentous fungi represent a rich source of extrolites, including secondary metabolites (SMs) comprising a great variety of astonishing structures and interesting bioactivities. State-of-the-art techniques in genome mining, genetic manipulation, and secondary metabolomics have enabled the scientific community to better elucidate and more deeply appreciate the genetic and biosynthetic chemical arsenal of these microorganisms. Aspergillus flavus is best known as a contaminant of food and feed commodities and a producer of the carcinogenic family of SMs, aflatoxins. This fungus produces many SMs including polyketides, ribosomal and nonribosomal peptides, terpenoids, and other hybrid molecules. This review will discuss the chemical diversity, biosynthetic pathways, and biological/ecological role of A. flavus SMs, as well as their significance concerning food safety and security.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Infection of phyllosphere (stems, leaves, husks, and grains) by pathogenic fungi reduces the wheat yield and grain quality. Detection of the main wheat pathogenic fungi provides information about species composition and allows effective and targeted plant treatment. Since conventional procedures for the detection of these organisms are unreliable and time consuming, diagnostic DNA-based methods are required. Nucleic acid amplification technologies are independent of the morphological and biochemical characteristics of fungi. Microorganisms do not need to be cultured. Therefore, a number of PCR-based methodologies have been developed for the identification of key pathogenic fungi, such as Fusarium spp., Puccinia spp., Zymoseptoria tritici, Parastagonospora nodorum, Blumeria graminis f. sp. tritici, and Pyrenophora tritici-repentis. This article reviews frequently used DNA regions for fungus identification and discusses already known PCR assays for detection of the aforementioned wheat pathogens. We demonstrate that PCR-based wheat pathogen identification assays require further research. In particular, the number of diagnostic tests for Fusarium graminearum, Puccinia spp., and P. tritici-repentis are insufficient.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高度分化的裂殖酵母的细胞(S.)Pombe和日本血吸虫裂殖酵母存在两种性/交配类型之一,称为P(表示正)或M(表示负),由哪个等位基因指定,M或P,位于mat1。裂变酵母已经进化出一种优雅的机制,可以通过编程的DNA重组事件在mat1上切换P或M信息,其中两个沉默的交配型基因之一位于基因组附近。切换过程高度依赖于细胞周期和生成,因此细胞的四个孙子中只有一个会切换配对类型。对裂殖酵母的广泛研究确立了mat1基因座处的天然DNA链手性是不对称细胞分裂的主要基础。这种不对称性是由于在DNA复制过程中安装在两个染色单体之一中的mat1上的独特位点和链特异性表观遗传“印记”造成的。印记由一个子细胞继承,维持一个细胞周期,然后用于在随后的细胞周期中的mat1复制期间启动重组。这种细胞类型转换的机制被认为是这两种生物所独有的,但是由于技术原因,无法确定这种机制在其他生物体中的运行。这篇综述总结了在理解裂殖酵母交配型转换方面的最新令人兴奋的发展,并扩展了这些观察结果,以表明这种基于DNA链的细胞分化表观遗传机制也可以在二倍体生物中发挥作用。
    Cells of the highly diverged Schizosaccharomyces (S.) pombe and S. japonicus fission yeasts exist in one of two sex/mating types, called P (for plus) or M (for minus), specified by which allele, M or P, resides at mat1. The fission yeasts have evolved an elegant mechanism for switching P or M information at mat1 by a programmed DNA recombination event with a copy of one of the two silent mating-type genes residing nearby in the genome. The switching process is highly cell-cycle and generation dependent such that only one of four grandchildren of a cell switches mating type. Extensive studies of fission yeast established the natural DNA strand chirality at the mat1 locus as the primary basis of asymmetric cell division. The asymmetry results from a unique site- and strand-specific epigenetic \"imprint\" at mat1 installed in one of the two chromatids during DNA replication. The imprint is inherited by one daughter cell, maintained for one cell cycle, and is then used for initiating recombination during mat1 replication in the following cell cycle. This mechanism of cell-type switching is considered to be unique to these two organisms, but determining the operation of such a mechanism in other organisms has not been possible for technical reasons. This review summarizes recent exciting developments in the understanding of mating-type switching in fission yeasts and extends these observations to suggest how such a DNA strand-based epigenetic mechanism of cellular differentiation could also operate in diploid organisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis are able to form biofilms on virtually any biomaterial implanted in a human host. Biofilms are a primary cause of mortality in immunocompromised and hospitalized patients, as they cause recurrent and invasive candidiasis, which is difficult to eradicate. This is due to the fact that the biofilm cells show high resistance to antifungal treatments and the host defense mechanisms, and exhibit an excellent ability to adhere to biomaterials. Elucidation of the mechanisms of antifungal resistance in Candida biofilms is of unquestionable importance; therefore, this review analyzes both the chemical composition of biomaterials used to fabricate the medical devices, as well as the Candida genes and proteins that confer drug resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Case Reports
    We report a case of catheter-related Scedosporium apiospermum soft-tissue infection. This ubiquitous filamentous fungus can cause human infection after traumatic subcutaneous implantation of its conidia or their inhalation in near-drowning cases. It has also been reported as an etiological agent in a growing number of hospital-acquired infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Four strains of Ochroconis gallopava from 3 out of 15 Japanese hot springs were isolated. Colonies of the hot spring isolates were uniformly floccose and dark olive green on the surface and dark brown on their reverse side on potato dextrose agar (PDA) plates, however, they became felty, flat, and brownish-black, and produced a reddish-brown pigment after several times of subculture at room temperature. Shapes and sizes of conidia of the four strains were individual, while the D1/D2 domain of the large subunit ribosomal RNA gene sequences showed 99.7% identity in the GenBank database. The DNA pattern of the hot spring isolates amplified by species specific loop mediated isothermal amplification method were as the same pattern as that of a clinical isolate. The minimum inhibitory concentrations of antifungal agents to O. gallopava isolated from the hot springs were ranged from 0.5 to 1 microg/ml in amphotericin B, 1 to 16 microg/ml in flucytosine, 0.125 to 0.25 microg/ml in itraconazole, 1 to 4 microg/ml in miconazole, 16 to 64 microg/ml in flconazole and 0.03 to 0.5 microg/ml in micafungin. The isolates had fatal outcome in experimentally infected mice intravenously with severe invasiveness to brains and kidneys. These findings suggested that O. gallopava habitats in hot springs could be one of sources for infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Biological control of fungal plant pathogens appears as an attractive and realistic approach, and numerous microorganisms have been identified as biocontrol agents. There have been many efforts to understand the mechanisms of action of fungal biocontrol agents. Microbiological, microscopic, and biochemical techniques applied over many years have shed light on these mechanisms without fully demonstrating them. More recently, the development of molecular techniques has yielded innovative alternative tools for understanding and demonstrating the mechanisms underlying biocontrol properties. To date, more than 70 publications describe the use of molecular techniques for this purpose. They describe work exploiting targeted or non-targeted gene isolation, gene expression profiling, gene inactivation and/or overexpression, the study of regulatory factors. This work has shed considerable light on mechanisms underlying biocontrol properties. It has also fully demonstrated a number of targeted action mechanisms of some biocontrol agents. This review describes the techniques used in such studies, with their potential and limitations. It should provide a guide for researchers wanting to study the molecular basis of the biocontrol in diverse biocontrol agents.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The genus Pneumocystis comprises noncultivable, highly diversified fungal pathogens dwelling in the lungs of mammals. The genus includes numerous host-species-specific species that are able to induce severe pneumonitis, especially in severely immunocompromised hosts. Pneumocystis organisms attach specifically to type-1 epithelial alveolar cells, showing a high level of subtle and efficient adaptation to the alveolar microenvironment. Pneumocystis species show little difference at the light microscopy level but DNA sequences of Pneumocystis from humans, other primates, rodents, rabbits, insectivores and other mammals present a host-species-related marked divergence. Consistently, selective infectivity could be proven by cross-infection experiments. Furthermore, phylogeny among primate Pneumocystis species was correlated with the phylogeny of their hosts. This observation suggested that cophylogeny could explain both the current distribution of pathogens in their hosts and the speciation. Thus, molecular, ultrastructural and biological differences among organisms from different mammals strengthen the view of multiple species existing within the genus Pneumocystis. The following species were subsequently described: Pneumocystis jirovecii in humans, Pneumocystis carinii and Pneumocystis wakefieldiae in rats, and Pneumocystis murina in mice. The present work focuses on Pneumocystis oryctolagi sp. nov. from Old-World rabbits. This new species has been described on the basis of both biological and phylogenetic species concepts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Chitin is the second most abundant organic and renewable source in nature, after cellulose. Chitinases are chitin-degrading enzymes. Chitinases have important biophysiological functions and immense potential applications. In recent years, researches on fungal chitinases have made fast progress, especially in molecular levels. Therefore, the present review will focus on recent advances of fungal chitinases, containing their nomenclature and assays, purification and characterization, molecular cloning and expression, family and structure, regulation, and function and application.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号