Ecdysteroids

蜕皮类固醇
  • 文章类型: Journal Article
    单氟兰(L.)DC。(syn.Leuzeauniflora(L.)Holub)是菊科(菊科)科的一种植物物种,广泛用于中国的亚洲传统药物中,西伯利亚,和蒙古作为抗炎和兴奋剂的补救措施。目前,R.uniflorum对化学家具有科学意义,生物学家,和药理学家,这篇综述包括1991年至2022年的科学文献中的信息。对R.uniflorum的化学多样性的研究揭示了225种化合物的存在,包括倍半萜,蜕皮类固醇,三萜,固醇,噻吩,羟基肉桂酸酯,黄酮类化合物,木脂素,核苷和维生素,烷烃,脂肪酸,和碳水化合物。研究最多的物质组是酚类(76种化合物)和三萜类(69种化合物)。有关所选化合物的色谱分析方法的信息,以及一氟菌各个器官中某些成分的定量含量,在这项工作中进行了总结。研究表明,单氟菌的提取物和部分化合物具有广泛的生物活性,包括消炎药,抗肿瘤,免疫刺激,抗焦虑药,压力保护,行动保护,抗缺氧,合成代谢,保肝,抑制PPARγ受体,抗动脉粥样硬化,和降血脂。已发表的关于R.uniflorum的代谢物和生物活性的研究不包括提取物和纯化合物的临床研究;因此,需要对这种传统药用植物进行准确的研究。
    Rhaponticum uniflorum (L.) DC. (syn. Leuzea uniflora (L.) Holub) is a plant species of the Compositae (Asteraceae) family that is widely used in Asian traditional medicines in China, Siberia, and Mongolia as an anti-inflammatory and stimulant remedy. Currently, R. uniflorum is of scientific interest to chemists, biologists, and pharmacologists, and this review includes information from the scientific literature from 1991 to 2022. The study of the chemodiversity of R. uniflorum revealed the presence of 225 compounds, including sesquiterpenes, ecdysteroids, triterpenes, sterols, thiophenes, hydroxycinnamates, flavonoids, lignans, nucleosides and vitamins, alkanes, fatty acids, and carbohydrates. The most studied groups of substances are phenolics (76 compounds) and triterpenoids (69 compounds). Information on the methods of chromatographic analysis of selected compounds, as well as on the quantitative content of some components in various organs of R. uniflorum, is summarized in this work. It has been shown that the extracts and some compounds of R. uniflorum have a wide range of biological activities, including anti-inflammatory, antitumor, immunostimulatory, anxiolytic, stress-protective, actoprotective, antihypoxic, anabolic, hepatoprotective, inhibition of PPARγ receptors, anti-atherosclerotic, and hypolipidemic. Published research on the metabolites and bioactivity of R. uniflorum does not include clinical studies of extracts and pure compounds; therefore, an accurate study of this traditional medicinal plant is needed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The research on impacts of environmental chemicals on crustacean molting dates back to the 1970s when ground-breaking studies investigated the disruption of molting in Crustacea by organochlorines. With the emergence of a new scientific inquiry, termed environmental endocrine disruption, in the early 1990s, increasing attention has been attracted to the possibility that environmental chemicals capable of wreaking havoc on sex steroid-regulated processes in vertebrates can also adversely affect ecdysteroid-mediated processes, e.g. molting, in crustaceans. Given the fact that many molting-disrupting chemicals accumulate in crustacean tissues and that the effect on molting is not readily visible in the field, the disruption of molting by environmental chemicals has been dubbed the invisible endocrine disruption. In recent years, much advancement has been made in both the documentation of the phenomenon of molting disruption and the search for mechanisms, by which molting disruption occurs. This review provides an overview of the current status of the field of invisible endocrine disruption, and perspectives on future directions are also presented.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The reproductive biology of amphipods is reviewed to update the knowledge of the male and female reproductive processes of oogenesis and spermatogenesis as well as the endocrine systems of amphipods with the aim of advancing studies of reproductive toxicology. The ovarian and reproduction cycles of female gammaridean amphipods are closely correlated with the molt cycle, which is under direct control by the steroid hormone 20-hydroxyecdysone. The ability of males to copulate and subsequently for females to ovulate is restricted to the early postmolt period of the females. New developments in our understanding of the molt cycle and the endocrine regulatory pathways for reproduction using genomics techniques on other crustacean species are also discussed. The arthropod sterol ponasterone A or xenobiotics such as the fungicide fenarimol have been shown to elicit endocrine disruption in some crustaceans by acting as an agonist for 20-hydroxyecdysone at the ecdysone receptor or by inhibiting the synthesis of 20-hydroxyecdysone, respectively, resulting in disruption of molting and reproduction. Recent studies suggest that cadmium can inhibit secondary vitellogenesis in amphipods. Experimental approaches for examining the metabolic pathways associated with ecdysteroid hormonal signaling or metabolism, exoskeleton maintenance and molting, and the regulation of vitellogenin in amphipods are discussed. This information should aid in the identification of useful biomarkers for reproductive toxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Molting is a highly complex process that requires precise coordination to be successful. We describe the early classical endocrinological experiments that elucidated the hormones and glands responsible for this process. We then describe the more recent experiments that have provided information on the cellular and molecular aspects of molting. In addition to providing a review of the scientific literature, we have also included our perspectives.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The very first step in the study of the endocrine control of insect molting was taken in 1922. Stefan Kopec characterized a factor in the brain of the gypsy moth, Lymantria dispar which appeared to be essential for metamorphosis. This factor was later identified as the neuropeptide prothoracicotropic hormone (PTTH), the first discovery of a series of factors involved in the regulation of ecdysteroid biosynthesis in insects. It is now accepted that PTTH is the most important regulator of prothoracic gland (PG) ecdysteroidogenesis. The periodic increases in ecdysteroid titer necessary for insect development can basically be explained by the episodic activation of the PGs by PTTH. However, since the characterization of the prothoracicostatic hormone (PTSH), it has become clear that in addition to \'tropic factors\', also \'static factors\', which are responsible for the \'fine-tuning\' of the hemolymph ecdysteroid titer, are at play. Many of these regulatory factors are peptides originating from the brain, but also other, extracerebral factors both of peptidic and non-peptidic nature are able to affect PG ecdysteroidogenesis, such as the \'classic\' insect hormones, juvenile hormone (JH) and the molting hormone (20E) itself. The complex secretory pattern of ecdysteroids as observed in vivo is the result of the delicate balance and interplay between these ecdysiotropic and ecdysiostatic factors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Rhaponticum carthamoides (Willd.) Iljin is a perennial herb, commonly known as a maral root or Russian leuzea, which has been used for centuries in eastern parts of Russia for its marked medicinal properties. This review based on 117 literary sources, with many of them being originally published in non-English languages (mainly in Russian), discusses the current knowledge of traditional uses, chemistry, biological effects and toxicity of this species. Several different classes of compounds were previously isolated from various parts of R. carthamoides of which the main groups are steroids, particularly ecdysteroids, and phenolics (flavonoids and phenolic acids) accompanied with polyacetylenes, sesquiterpene lactones, triterpenoid glycosides and terpenes (essential oil). A comprehensive account of the chemical constituents is given in this review (figures of 120 structures are shown). Various types of preparations, extracts and individual compounds derived from this species have been found to possess a broad spectrum of pharmacological effects on several organs such as the brain, blood, cardiovascular and nervous systems as well as on different biochemical processes and physiological functions including proteosynthesis, work capacity, reproduction, and sexual function. Moreover, the extracts and preparations from the plant, which are hopefully safe, exhibited various additional biological effects e.g. antioxidant, immunomodulatory, anticancerogenic, antimicrobial, antiparasitic and insect antifeedant or repellent activities. The results of data analysis on the chemical, pharmacological and toxicological characteristics of R. carthamoides support the view that this species has beneficial therapeutic properties and indicate its potential as an effective adaptogenic herbal remedy. Finally, some suggestions for further research on chemical and pharmacological properties are given in this review.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    A number of intermediates involved in the dealkylation and conversion of the major C28 and C29 phytosterols to cholesterol in insects were first isolated and identified in studies with the tobacco hornworm, Manduca sexta, carried out in our laboratory. We also investigated the effects of a variety of known sterol metabolism inhibitors in Manduca, particularly those affecting the delta 24-sterol reductase enzyme, and synthesized and tested a number of new inhibitors as well. In-depth studies of ecdysteroids in Manduca during embryogenesis and during pupal-adult development provided new information on molting hormone content, biosynthesis, and metabolism. In addition, this insect has been utilized in the study of three specific enzyme systems of ecdysteroid metabolism, namely 20-monooxygenase, 3-epimerase, and phosphotransferase, which are critical to activation and deactivation of molting hormones in insects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Insect-molting hormones, phytoecdysteroids, have been reported to occur in over 100 plant families. Plants, unlike insects, are capable of the biosynthesis of ecdysteroids from mevalonic acid, and in several cases the biosynthesis of phytoecdysteroids was also demonstrated to proceed via sterols. Spinacia oleracea (spinach) biosynthesizes polypodine B and 20-hydroxyecdysone, which is the predominant insect-molting hormone found in plant species. The onset of ecdysteroid production in spinach requires the appropriate ontogenetic development within the plant, which is related to leaf development. In spinach, lathosterol is the biosynthetic precursor to ecdysone and 20-hydroxyecdysone. Phosphorylated ecdysteroid intermediates, particularly ecdysone-3-phosphate, are required during biosynthesis. Polyphosphorylated forms of ecdysteroids are putative regulatory components of the pathway. During spinach development, the 20-hydroxyecdysone is transported from the sites of biosynthesis to the apical regions. An analysis of the physiological data available suggests that different species may synthesize ecdysteroids in various organs and distribute these ecdysteroids to other sites. Annual plants appear to concentrate ecdysteroids in the apical regions, including flowers and seeds. Perennial plants may recycle their ecdysteroids between their deciduous and their perennial organs over the growing season. Further investigations of ecdysteroid biosynthesis and physiology within plants will be required before an acceptable system can be designed to test phytoecdysteroid effectiveness in vivo against insect herbivory.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号