EF Hand Motifs

EF 手形图案
  • 文章类型: Journal Article
    There is still an unmet need for simple methods to verify, visualize, and confirm protein-protein interactions in vivo. Here we describe a plasmid-based system to study such interactions. The system is based on the transmembrane domain (TMD) of the EF-hand Ca(2+) sensor protein calneuron-2. We show that fusion of 28 amino acids that include the TMD of calneuron-2 to proteins of interest results in prominent localization on the cytoplasmic side of the Golgi. The recruitment of binding partners to the protein of interest fused to this sequence can then be easily visualized by fluorescent tags.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Juvenile hormone diol kinase (JHDK) is an enzyme involved in JH degradation. In the present article, a putative JHDK cDNA (LdJHDK) was cloned from the Colorado potato beetle Leptinotarsa decemlineata. The cDNA consists of 814 bp, containing a 555 bp open reading frame encoding a 184 amino acid protein. LdJHDK reveals a high degree of identity to the previously reported insect JHDKs. It possesses three conserved purine nucleotide-binding elements, and contains three EF-hand motifs (helix-loop-helix structural domains). LdJHDK mRNA was mainly detected in hindgut and Malpighian tubules. Besides, a trace amount of LdJHDK mRNA was also found in thoracic muscles, brain-corpora cardiaca-corpora allata complex, foregut, midgut, ventral ganglia, fat body, epidermis, and hemocytes. Moreover, LdJHDK was expressed throughout all developmental stages. Within the first, second, and third larval instar, the expression levels of LdJHDK were higher just before and right after the molt, and were lower in the intermediate instar. In the fourth larval instar, the highest peak of LdJHDK occurred 56 h after ecdysis. Ingestion of double-stranded RNA (dsRNA) against LdJHDK successfully knocked down the target gene, increased JH titer, and significantly upregulated LdKr-h1 mRNA level. Knockdown of LdJHDK significantly impaired adult emergence. Thus, we provide a line of experimental evidence in L. decemlineata to support that LdJHDK encodes function protein involved in JH degradation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    BACKGROUND: Calmodulin (CaM) plays an important role in Ca(2+)-dependent signal transduction. Ca(2+) binding to CaM triggers a conformational change, forming a hydrophobic patch that is important for target protein recognition. CaM regulates a Ca(2+)-dependent inactivation process in store-operated Ca(2+) entry, by interacting Orai1. To understand the relationship between Ca(2+)-induced hydrophobicity and CaM/Orai interaction, chimera proteins constructed by exchanging EF-hands of CaM with those of Troponin C (TnC) are used as an informative probe to better understand the functionality of each EF-hand.
    RESULTS: ANS was used to assess the context of the induced hydrophobic surface on CaM and chimeras upon Ca(2+) binding. The exchanged EF-hands from TnC to CaM resulted in reduced hydrophobicity compared with wild-type CaM. ANS lifetime measurements indicated that there are two types of ANS molecules with rather distinct fluorescence lifetimes, each specifically corresponding to one lobe of CaM or chimeras. Thermodynamic studies indicated the interaction between CaM and a 24-residue peptide corresponding to the CaM-binding domain of Orail1 (Orai-CMBD) is a 1:2 CaM/Orai-CMBD binding, in which each peptide binding yields a similar enthalpy change (ΔH = -5.02 ± 0.13 kcal/mol) and binding affinity (K(a) = 8.92 ± 1.03 × 10(5) M(-1)). With the exchanged EF1 and EF2, the resulting chimeras noted as CaM(1TnC) and CaM(2TnC), displayed a two sequential binding mode with a one-order weaker binding affinity and lower ΔH than that of CaM, while CaM(3TnC) and CaM(4TnC) had similar binding thermodynamics as CaM. The dissociation rate constant for CaM/Orai-CMBD was determined to be 1.41 ± 0.08 s(-1) by rapid kinetics. Stern-Volmer plots of Orai-CMBD Trp76 indicated that the residue is located in a very hydrophobic environment but becomes more solvent accessible when EF1 and EF2 were exchanged.
    CONCLUSIONS: Using ANS dye to assess induced hydrophobicity showed that exchanging EFs for all Ca(2+)-bound chimeras impaired ANS fluorescence and/or binding affinity, consistent with general concepts about the inadequacy of hydrophobic exposure for chimeras. However, such ANS responses exhibited no correlation with the ability to interact with Orai-CMBD. Here, the model of 1:2 binding stoichiometry of CaM/Orai-CMBD established in solution supports the already published crystal structure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The EF-hand motif (helix-loop-helix) is a Ca(2+)-binding domain that is common among many intracellular Ca(2+)-binding proteins. We applied Fourier-transform infrared spectroscopy to study the synthetic peptide analogues of site III of rabbit skeletal muscle troponin C (helix E-loop-helix F). The 17-residue peptides corresponding to loop-helix F (DRDADGYIDAEELAEIF), where one residue is substituted by the D-type amino acid, were investigated to disturb the α-helical conformation of helix F systematically. These D-type-substituted peptides showed no band at about 1555 cm(-1) even in the Ca(2+)-loaded state although the native peptide (L-type only) showed a band at about 1555 cm(-1) in the Ca(2+)-loaded state, which is assigned to the side-chain COO(-) group of Glu at the 12th position, serving as the ligand for Ca(2+) in the bidentate coordination mode. Therefore, helix F is vital to the interaction between the Ca(2+) and the side-chain COO(-) group of Glu at the 12th position. Implications of the COO(-) antisymmetric stretch and the amide-I\' of the synthetic peptide analogues of the Ca(2+)-binding sites are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    We used steered molecular dynamics (SMD) to simulate the process of Ca(2+) dissociation from the EF-hand motifs of the C-terminal lobe of calmodulin. Based on an analysis of the pulling forces, the dissociation sequences and the structural changes, we show that the Ca(2+)-coordinating residues lose their binding to Ca(2+) in a stepwise fashion. The two Ca(2+) ions dissociate from the two EF-hands simultaneously, with two distinct groups among the five Ca(2+)-coordinating residues affecting the EF-hand conformational changes differently. These results provide new insights into the effects of Ca(2+) on calmodulin conformation, from which a novel sequential mechanism of Ca(2+)-calmodulin dissociation is proposed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Ciliate Euplotes octocarinatus centrin (EoCen) is a member of the EF-hand superfamily of calcium-binding proteins, which often associated with the centrosomes and basal bodies. To explore the possible structural role of EoCen, we initiated a physicochemical study of the self-assembly properties of the purified protein in vitro. The native PAGE results indicate that only the integral protein shows multimers in the presence of Lu(3+). The dependence of Lu(3+) induced self-assembly of EoCen on various chemical and physical factors, including temperature, protein concentration, ionic strength and pH, was characterized using resonance light scattering (RLS). Control experiments with different metal ions suggest that Ca(2+) and Lu(3+) bindings to the N-terminal domain of EoCen are all positive to the self-assembly of the protein, and Lu(3+) exhibits the stronger effect, however, Mg(2+) alone cannot take the same effect. The experiments of 2-ptoluidinylnaphthalene-6-sulfonate (TNS) binding and ionic strength demonstrate that the lutetium(III)-dependent self-assembly is closely related to the exposure of hydrophobic cavity. Control experiment on pH value with EoCen and the fragments of it, N-terminal domain of EoCen (N-EoCen), indicates that the electrostatic effect is of small tendency to be served as the main driving force in the self-assembly of EoCen. The specific oligomerization form of the protein was exhibited by cross-linking experiment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Parvalbumins (PV) are calcium-binding proteins, all sharing the common helix-loop-helix (EF-hand) motif. This motif contains a central twelve-residue Ca(2+)-binding loop with the flanking helices positioned roughly perpendicular to each other. The precise role of these coordination residues has been the subject of intense studies. In this work, we focus on the coordination position 5 in the CD Ca(2+)-binding site of silver hake parvalbumin isoform B (SHPV-B). The most common residue at site 5 of calcium-binding loop in canonical EF-hands is Asp [B.J. Marsden, G.S. Shaw, B.D. Sykes, Biochem. Cell Biol. 68 (1990) 587-601], but in the CD site of PV, this position is almost always serine (Ser). The substitution of Ser with Asp will add the 5th carboxylate residue in the CD coordination sphere. However, as predicted by the acid pair hypothesis, the Ca(2+)-binding affinity would be maximized in an EF-hand motif that has four carboxylate ligands paired along the +/-x, and +/-z-axes [R.E. Reid, R.S. Hodges, J. Theor. Biol. 84 (1980) 401-444]. Molecular dynamics simulations and free energy calculations were employed to investigate the influence of Ser to Asp mutation at position 5 on calcium-binding affinity. We found that the Asp variant exhibited remarkable stability during the entire molecular dynamics simulation, with not only the retention of the Ca(2+)-binding site, but also increased compactness in the coordination sphere. The S55D fragment also accommodated Ca(2+) well. We conclude that the reason why Asp which is the most common residue at site 5 of calcium-binding loop in canonical EF-hands has never been identified at this position experimentally for PVs might be related to its physiological functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Proteins with the ability to specifically bind strontium would potentially be of great use in the field of nuclear waste management. Unfortunately, no such peptides or proteins are known -- indeed, it is uncertain whether they exist under natural conditions due to low environmental concentrations of strontium. To investigate the possibility of devising such molecules, one of us (CV), in a previous experimental study, proposed starting from an EF-hand motif of the protein calmodulin and mutating some residues to change the motif\'s specificity for calcium into one for strontium. In this paper, which represents a theoretical complement to the experimental work, we analyzed small-molecule crystallographic structures and performed quantum chemical calculations to identify possible mutations. We then constructed seven mutant sequences of the EF-hand motif and analyzed their dynamical and binding behaviors using molecular dynamics simulations and free-energy calculations (using the MM/PBSA method). As a result of these analyzes we were able to isolate some characteristics that could lead to mutant peptides with enhanced strontium affinity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Calbindin D(28K) is a six-EF-hand calcium-binding protein found in the brain, peripheral nervous system, kidney, and intestine. There is a paucity of information on the effects of calcium binding on calbindin D(28K) structure. To further examine the mechanism and structural consequences of calcium binding to calbindin D(28K) we performed detailed complementary heteronuclear NMR and microelectrospray mass spectrometry investigations of the calcium-induced conformational changes of calbindin D(28K). The combined use of these two powerful analytical techniques clearly and very rapidly demonstrates the following: (i). apo-calbindin D(28K) has an ordered structure which changes to a notably different ordered conformation upon Ca(2+) loading, (ii). calcium binding is a sequential process and not a simultaneous event, and (iii). EF-hands 1, 3, 4, and 5 take up Ca(2+), whereas EF-hands 2 and 6 do not. Our results support the opinion that calbindin D(28K) has characteristics of both a calcium sensor and a buffer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    BACKGROUND: Several Ca2+-binding proteins, which possess EF-hand sites with a high sequence similarity, have been found to be able to induce Type-I allergy.
    OBJECTIVE: To study whether the common EF-hand sequential motifs can be involved in the IgE-reactivity of these proteins, thus being responsible of a degree of cross-reactivity among different Ca2+-binding proteins.
    METHODS: Two olive pollen allergens, Ole e 3 and Ole e 8, have been used in the study. Parvalbumin and calmodulin were included in immunological analyses. Sera from patients allergic to olive pollen, as well as Ole e 3- and Ole e 8-specific rabbit antisera were used in indirect enzyme-linked immunosorbent assay (ELISA), ELISA inhibition assays and immunoblotting. Conformational analyses (circular dichroism spectra and thermal stability) and specific immunodetection assays were performed in the presence and the absence of Ca2+. Chemical breakdown and high-performance liquid chromatography (HPLC) was used to obtain fragments from Ole e 3 containing a single EF-hand motif.
    RESULTS: Thirty-four (17%) and 16 (8.2%) out of 195 sera from patients allergic to olive pollen contained specific IgE against Ole e 3 and Ole e 8, respectively. The IgE-binding of 12 allergic sera diminished up to 22% for Ole e 3 and to 82% for Ole e 8, when depleted Ca2+. A pool of these sera recognized the two olive allergens and parvalbumin, but at very different extent. Inhibition of the IgE-binding was only achieved between two olive allergens. No structural relationships between Ole e 3 and Ole e 8 were established when specific polyclonal antisera against both proteins were used.
    CONCLUSIONS: EF-hand Ca2+-binding sites can not be considered as general allergenic motifs responsible for the cross-reactivity between Ca2+-binding allergens. Different families of Ca2+-binding allergens have specific epitopes that could be involved in the cross-reactivity among members of the same family.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号