Cyclins

细胞周期蛋白
  • 文章类型: Journal Article
    花瓣尺寸,经济上重要的观赏玫瑰(Rosahybrida)的关键特征,受到细胞分裂和细胞扩增的协同调节。细胞分裂主要发生在花瓣的早期发育过程中。然而,花瓣大小调节的分子机制尚不清楚。在这项研究中,我们分离了转录因子基因RhSCL28,该基因在玫瑰花瓣发育的早期高表达,并被细胞分裂素诱导。沉默RhSCL28导致玫瑰花瓣的最终花瓣大小减小和细胞数量减少。进一步分析表明,RhSCL28通过正向调节细胞周期蛋白基因RhCYCA1;1和RhCYCB1;2的表达参与细胞分裂的调节。探讨细胞分裂素调控RhSCL28表达的潜在机制,我们研究了细胞分裂素反应因子RhRR1,并确定它正调节RhSCL28的表达.与RhSCL28一样,沉默RhRR1也会通过减少细胞数量而导致更小的花瓣。一起来看,这些结果表明,RhRR1-RhSCL28模块通过促进玫瑰的细胞分裂来正向调节花瓣的大小。
    Petal size, a crucial trait in the economically important ornamental rose (Rosa hybrida), is synergistically regulated by cell division and cell expansion. Cell division primarily occurs during the early development of petals. However, the molecular mechanism underlying the regulation of petal size is far from clear. In this study, we isolated the transcription factor gene RhSCL28, which is highly expressed at the early stage of rose petal development and is induced by cytokinin. Silencing RhSCL28 resulted in a reduced final petal size and reduced cell number in rose petals. Further analysis showed that RhSCL28 participates in the regulation of cell division by positively regulating the expression of the cyclin genes RhCYCA1;1 and RhCYCB1;2. To explore the potential mechanism for cytokinin-mediated regulation of RhSCL28 expression, we investigated the cytokinin response factor RhRR1 and determined that it positively regulates RhSCL28 expression. Like RhSCL28, silencing RhRR1 also resulted in smaller petals by decreasing cell number. Taken together, these results reveal that the RhRR1-RhSCL28 module positively regulates petal size by promoting cell division in rose.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    疱疹病毒蛋白激酶,例如人巨细胞病毒(HCMV)的治疗相关pUL97,对病毒复制效率和发病机制都很重要,并代表关键的抗病毒药物靶标。HCMVpUL97是一种病毒细胞周期蛋白依赖性激酶(CDK)直系同源物,因为它与人类CDK共享功能和结构特性。最近,已经证明了vCDK/pUL97-cyclin复合物的形成以及多种病毒和细胞底物蛋白的磷酸化。遗传作图和结构建模方法帮助定义了两个pUL97接口,IF1和IF2,负责细胞周期蛋白结合。特别是,已经强调了vCDK/pUL97与宿主细胞周期蛋白以及CDK之间相互作用的调节重要性,既可以作为病毒复制的决定因素,也可以作为一种新型的药物靶向选择。这一方面通过发现细胞周期蛋白H型敲除后病毒复制受损而得到证实,并且这种针对宿主的干扰也会影响对现有疗法具有抗性的病毒。除了形成二元相互作用复合体之外,还描述了三元PUL97-细胞周期蛋白H-CDK7复合物,鉴于此,pUL97对CDK7活性的实验性反式刺激对于病毒-宿主共调控至关重要.根据这一认识,已经出现了几种新的抗病毒靶向选择。这些包括针对pUL97,宿主CDK的激酶抑制剂,和pUL97-cyclinH相互作用复合物。重要的是,最近报道了使用药理学相关CDK7和vCDK/pUL97抑制剂组合的抗病毒治疗方案具有统计学意义的药物协同作用。包括Maribavir.合并,这些发现为抗HCMV控制提供了更多的选择。这篇综述的重点是vCDK/pUL97与宿主细胞周期蛋白-CDK装置的调控相互作用,它解决了这些关键效应复合物与病毒复制和发病机理的功能相关性。在此基础上,定义了抗病毒药物靶向的新策略。
    Herpesviral protein kinases, such as the therapy-relevant pUL97 of human cytomegalovirus (HCMV), are important for viral replication efficiency as well as pathogenesis, and represent key antiviral drug targets. HCMV pUL97 is a viral cyclin-dependent kinase (CDK) ortholog, as it shares functional and structural properties with human CDKs. Recently, the formation of vCDK/pUL97-cyclin complexes and the phosphorylation of a variety of viral and cellular substrate proteins has been demonstrated. Genetic mapping and structural modeling approaches helped to define two pUL97 interfaces, IF1 and IF2, responsible for cyclin binding. In particular, the regulatory importance of interactions between vCDK/pUL97 and host cyclins as well as CDKs has been highlighted, both as determinants of virus replication and as a novel drug-targeting option. This aspect was substantiated by the finding that virus replication was impaired upon cyclin type H knock-down, and that such host-directed interference also affected viruses resistant to existing therapies. Beyond the formation of binary interactive complexes, a ternary pUL97-cyclin H-CDK7 complex has also been described, and in light of this, an experimental trans-stimulation of CDK7 activity by pUL97 appeared crucial for virus-host coregulation. In accordance with this understanding, several novel antiviral targeting options have emerged. These include kinase inhibitors directed to pUL97, to host CDKs, and to the pUL97-cyclin H interactive complexes. Importantly, a statistically significant drug synergy has recently been reported for antiviral treatment schemes using combinations of pharmacologically relevant CDK7 and vCDK/pUL97 inhibitors, including maribavir. Combined, such findings provide increased options for anti-HCMV control. This review focuses on regulatory interactions of vCDK/pUL97 with the host cyclin-CDK apparatus, and it addresses the functional relevance of these key effector complexes for viral replication and pathogenesis. On this basis, novel strategies of antiviral drug targeting are defined.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    泛素化是电离辐射(IR)诱导的DNA双链断裂(DSB)的正确修复所需的关键翻译后修饰。当存在模板DNA时,DSB主要通过同源重组(HR)进行修复,而在不存在模板DNA时,则通过非同源末端连接(NHEJ)进行修复。此外,微同源介导的末端连接(MMEJ)和单链退火(SSA)提供了备份的DSB修复途径。然而,控制其使用的机制仍然知之甚少。通过使用红外后泛素系统的高分辨率CRISPR屏幕,我们系统地揭示了细胞存活所需的基因,并阐明了E3泛素连接酶SCFcyclinF在细胞周期依赖性DSB修复中的关键作用.我们显示SCFcyclinF介导的EXO1降解阻止有丝分裂中的DNA末端切除,允许MMEJ发生。此外,我们确定了一个保守的细胞周期蛋白F识别基序,与其他细胞周期蛋白使用的不同,在细胞周期控制的细胞周期蛋白特异性方面具有广泛的意义。
    Ubiquitination is a crucial posttranslational modification required for the proper repair of DNA double-strand breaks (DSBs) induced by ionizing radiation (IR). DSBs are mainly repaired through homologous recombination (HR) when template DNA is present and nonhomologous end joining (NHEJ) in its absence. In addition, microhomology-mediated end joining (MMEJ) and single-strand annealing (SSA) provide backup DSBs repair pathways. However, the mechanisms controlling their use remain poorly understood. By using a high-resolution CRISPR screen of the ubiquitin system after IR, we systematically uncover genes required for cell survival and elucidate a critical role of the E3 ubiquitin ligase SCFcyclin F in cell cycle-dependent DSB repair. We show that SCFcyclin F-mediated EXO1 degradation prevents DNA end resection in mitosis, allowing MMEJ to take place. Moreover, we identify a conserved cyclin F recognition motif, distinct from the one used by other cyclins, with broad implications in cyclin specificity for cell cycle control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质-蛋白质相互作用(PPI)与分子胶的稳定在药物发现中起着至关重要的作用,尽管面临重大挑战。在这项研究中,我们提出了一种双站点方法,以PPI区域及其动态环境为目标。我们进行分子动力学模拟,以确定PPI上稳定细胞周期蛋白依赖性激酶12-DNA损伤结合蛋白1(CDK12-DDB1)复合物的关键位点。导致细胞周期蛋白K进一步降解。这种探索导致了LL-K12-18,一种双位点分子胶,这增强了胶的性能,以增加降解动力学和效率。值得注意的是,LL-K12-18对肿瘤细胞的基因转录和抗增殖作用有很强的抑制作用,当与其前体化合物SR-4835相比时,在MDA-MB-231(88倍)和MDA-MB-468细胞(307倍)中显示出显著的效力改善。这些发现强调了双位点方法在破坏CDK12功能方面的潜力,并为设计细胞周期蛋白K分子胶提供了基于结构洞察力的框架。
    Protein-protein interactions (PPIs) stabilization with molecular glues plays a crucial role in drug discovery, albeit with significant challenges. In this study, we propose a dual-site approach, targeting the PPI region and its dynamic surroundings. We conduct molecular dynamics simulations to identify critical sites on the PPI that stabilize the cyclin-dependent kinase 12 - DNA damage-binding protein 1 (CDK12-DDB1) complex, resulting in further cyclin K degradation. This exploration leads to the creation of LL-K12-18, a dual-site molecular glue, which enhances the glue properties to augment degradation kinetics and efficiency. Notably, LL-K12-18 demonstrates strong inhibition of gene transcription and anti-proliferative effects in tumor cells, showing significant potency improvements in MDA-MB-231 (88-fold) and MDA-MB-468 cells (307-fold) when compared to its precursor compound SR-4835. These findings underscore the potential of dual-site approaches in disrupting CDK12 function and offer a structural insight-based framework for the design of cyclin K molecular glues.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    受调控的细胞周期进程确保稳态并预防癌症。在增殖细胞中,E3泛素连接酶后酶促进复合物/环体(APC/C)避免了过早的S期进入,尽管降解抑制G1-S进展的APC/C底物尚不完全清楚。APC/C在退出细胞周期的停滞细胞中也很活跃,但目前尚不清楚APC/C是否维持所有类型的逮捕。这里,通过表达APC/C抑制剂,EMI1,我们表明APC/C活性对于防止由药理学细胞周期蛋白依赖性激酶4和6(CDK4/6)抑制(Palbociclib)阻止的细胞中的S期进入至关重要。因此,抑制细胞周期基因表达需要活性蛋白降解。抑制APC/C的快速而强大的阻止旁路的机制涉及CDK以非典型的顺序作用,以失活视网膜母细胞瘤介导的E2F抑制。使APC/C失活首先引起有丝分裂细胞周期蛋白B的积累,然后促进细胞周期蛋白A的表达。我们认为细胞周期蛋白A是维持阻滞的关键底物,因为抗APC/C细胞周期蛋白A,但不是细胞周期蛋白B,足以诱导S相进入。绕过CDK4/6抑制阻滞的细胞启动DNA复制,来源许可严重减少。同时积累S期许可抑制剂,如细胞周期蛋白A和geminin,使用G1许可激活器破坏了G1-S进展的正常顺序。因此,DNA合成和细胞增殖严重受损。我们的研究结果预测,EMI1表达升高的癌症将倾向于逃避CDK4/6的抑制,未获得许可的S期,并遭受增强的基因组不稳定性。
    Regulated cell cycle progression ensures homeostasis and prevents cancer. In proliferating cells, premature S phase entry is avoided by the E3 ubiquitin ligase anaphasepromoting complex/cyclosome (APC/C), although the APC/C substrates whose degradation restrains G1-S progression are not fully known. The APC/C is also active in arrested cells that exited the cell cycle, but it is not clear whether APC/C maintains all types of arrest. Here, by expressing the APC/C inhibitor, EMI1, we show that APC/C activity is essential to prevent S phase entry in cells arrested by pharmacological cyclin-dependent kinases 4 and 6 (CDK4/6) inhibition (Palbociclib). Thus, active protein degradation is required for arrest alongside repressed cell cycle gene expression. The mechanism of rapid and robust arrest bypass from inhibiting APC/C involves CDKs acting in an atypical order to inactivate retinoblastoma-mediated E2F repression. Inactivating APC/C first causes mitotic cyclin B accumulation which then promotes cyclin A expression. We propose that cyclin A is the key substrate for maintaining arrest because APC/C-resistant cyclin A, but not cyclin B, is sufficient to induce S phase entry. Cells bypassing arrest from CDK4/6 inhibition initiate DNA replication with severely reduced origin licensing. The simultaneous accumulation of S phase licensing inhibitors, such as cyclin A and geminin, with G1 licensing activators disrupts the normal order of G1-S progression. As a result, DNA synthesis and cell proliferation are profoundly impaired. Our findings predict that cancers with elevated EMI1 expression will tend to escape CDK4/6 inhibition into a premature, underlicensed S phase and suffer enhanced genome instability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    结论:我们研究了拟南芥雌蕊发育过程中D3型细胞周期蛋白的功能,以及它们与激素细胞分裂素和转录因子SPATULA的关系。通过分生组织中的细胞分裂和分化过程来维持植物整个生命的生长。在拟南芥中,gynoecium的发育意味着一个多阶段的过程,在这个过程中,授粉所需的组织,受精,和种子发育形式。CarpelMargin分生组织(CMM)是一团未分化的细胞,可产生雌蕊内部组织,比如隔膜,胚珠,胎盘,真菌,发射道,风格,和耻辱。不同的遗传和荷尔蒙因素,包括细胞分裂素,控制CMM功能。细胞分裂素通过激活细胞周期调节因子作为细胞周期蛋白基因来调节细胞周期转换。D3型细胞周期蛋白在增殖组织中表达,有利于有丝分裂细胞周期而不是核内复制。尽管细胞分裂素在CMM和绞股蓝发育中的作用被高度研究,其在该组织中调节细胞周期的具体作用尚不清楚。此外,尽管对CYCD3基因与细胞分裂素之间的关系进行了广泛的研究,连接它们的监管机制仍然难以捉摸。这里,我们发现D3型细胞周期蛋白在增殖性内侧和外侧组织中表达。相反,这三个CYCD3基因的耗竭表明它们对于绞股蓝的发育不是必需的。然而,外源性细胞分裂素的添加表明,它们可以控制绞股蓝内部组织和外植体的分裂/分化平衡。最后,我们发现SPATULA可能是细胞分裂素和D3型细胞周期蛋白之间的机械联系。数据表明,D3型细胞周期蛋白在雌蕊发育中的作用与细胞分裂素反应有关,它们可能被转录因子SPATULA激活。
    CONCLUSIONS: We studied the D3-type cyclin function during gynoecium development in Arabidopsis and how they are related to the hormone cytokinin and the transcription factor SPATULA. Growth throughout the life of plants is sustained by cell division and differentiation processes in meristematic tissues. In Arabidopsis, gynoecium development implies a multiphasic process where the tissues required for pollination, fertilization, and seed development form. The Carpel Margin Meristem (CMM) is a mass of undifferentiated cells that gives rise to the gynoecium internal tissues, such as septum, ovules, placenta, funiculus, transmitting tract, style, and stigma. Different genetic and hormonal factors, including cytokinin, control the CMM function. Cytokinin regulates the cell cycle transitions through the activation of cell cycle regulators as cyclin genes. D3-type cyclins are expressed in proliferative tissues, favoring the mitotic cell cycle over the endoreduplication. Though the role of cytokinin in CMM and gynoecium development is highly studied, its specific role in regulating the cell cycle in this tissue remains unclear. Additionally, despite extensive research on the relationship between CYCD3 genes and cytokinin, the regulatory mechanism that connects them remains elusive. Here, we found that D3-type cyclins are expressed in proliferative medial and lateral tissues. Conversely, the depletion of the three CYCD3 genes showed that they are not essential for gynoecium development. However, the addition of exogenous cytokinin showed that they could control the division/differentiation balance in gynoecium internal tissues and outgrowths. Finally, we found that SPATULA can be a mechanistic link between cytokinin and the D3-type cyclins. The data suggest that the role of D3-type cyclins in gynoecium development is related to the cytokinin response, and they might be activated by the transcription factor SPATULA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    结论:BIG通过桥接拟南芥根中生长素梯度与SHR丰度来调节地面组织形成分裂。拟南芥根中皮质/内胚层缩写(CEI)和CEI子细胞(CEID)的形成分裂受纵向生长素梯度和径向短根(SHR)丰度的协调控制。然而,这种协调背后的机制仍然知之甚少。在这项研究中,我们证明BIG通过桥接生长素梯度与SHR丰度来调节地面组织形成性分裂。BIG基因突变抑制细胞周期进程,延迟地面组织内的形成分裂,并损害内胚层和皮质身份的建立。此外,我们发现生长素对BIG表达的抑制作用,以SHR依赖性方式触发CYCLIND6;1(CYCD6;1)激活。此外,视网膜母细胞瘤相关(RBR)的降解受BIG和CYCD6共同调控;1.BIG功能的丧失导致RBR蛋白积累,不利地影响SHR/SCARECROW(SCR)蛋白复合物和CEI/CEID形成分裂。总的来说,这些发现揭示了一个基本机制,其中BIG错综复杂地协调SHR/SCR和生长素之间的相互作用,转向拟南芥根组织内的地面组织图案。
    CONCLUSIONS: BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance in Arabidopsis roots. The formative divisions of cortex/endodermis initials (CEIs) and CEI daughter cells (CEIDs) in Arabidopsis roots are coordinately controlled by the longitudinal auxin gradient and the radial SHORT ROOT (SHR) abundance. However, the mechanism underlying this coordination remains poorly understood. In this study, we demonstrate that BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance. Mutations in BIG gene repressed cell cycle progression, delaying the formative divisions within the ground tissues and impairing the establishment of endodermal and cortical identities. In addition, we uncovered auxin\'s suppressive effect on BIG expression, triggering CYCLIND6;1 (CYCD6;1) activation in an SHR-dependent fashion. Moreover, the degradation of RETINOBLASTOMA-RELATED (RBR) is jointly regulated by BIG and CYCD6;1. The loss of BIG function led to RBR protein accumulation, detrimentally impacting the SHR/SCARECROW (SCR) protein complex and the CEI/CEID formative divisions. Collectively, these findings shed light on a fundamental mechanism wherein BIG intricately coordinates the interplay between SHR/SCR and auxin, steering ground tissue patterning within Arabidopsis root tissue.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    对极端条件下的生理和病理生理过程的研究有助于更好地了解健康生物体的状态,并且还可以阐明疾病的发病机理。近年来,很明显,重力压力会影响整个生物体和单个细胞。我们之前已经证明模拟微重力会抑制增殖,诱导细胞凋亡,改变形态,并改变巨核细胞系MEG-01的表面标记表达。在目前的工作中,我们研究了MEG-01细胞中细胞周期细胞周期蛋白的表达。我们进行了24小时的几个实验,72小时,96小时和168小时。流式细胞术和蛋白质印迹分析表明,细胞周期蛋白表达水平的主要变化发生在96小时后的模拟微重力条件下。细胞周期蛋白A的表达水平在前4天的RPM组中显示增加,随后是下降,which,连同细胞周期蛋白D的峰值,可能表明G2期细胞周期受到抑制,有丝分裂前。此外,根据PCR分析获得的数据,我们还可以看到,细胞周期蛋白A和细胞周期蛋白B的表达都在72小时出现峰值,STED显微镜数据还证实,MEG-01细胞细胞周期蛋白表达的主要变化发生在96小时,在模拟的微重力条件下,与静态控制相比。这些结果表明,RPM模拟微重力在MEG-01细胞中诱导的细胞周期破坏可能与细胞周期主要调节因子的表达改变有关。因此,这些数据暗示了MEG-01细胞中细胞应激的发展,这对于在真实空间中暴露于微重力的人类细胞的增殖可能很重要。
    The study of the physiological and pathophysiological processes under extreme conditions facilitates a better understanding of the state of a healthy organism and can also shed light on the pathogenesis of diseases. In recent years, it has become evident that gravitational stress affects both the whole organism and individual cells. We have previously demonstrated that simulated microgravity inhibits proliferation, induces apoptosis, changes morphology, and alters the surface marker expression of megakaryoblast cell line MEG-01. In the present work, we investigate the expression of cell cycle cyclins in MEG-01 cells. We performed several experiments for 24 h, 72 h, 96 h and 168 h. Flow cytometry and Western blot analysis demonstrated that the main change in the levels of cyclins expression occurs under conditions of simulated microgravity after 96 h. Thus, the level of cyclin A expression showed an increase in the RPM group during the first 4 days, followed by a decrease, which, together with the peak of cyclin D, may indicate inhibition of the cell cycle in the G2 phase, before mitosis. In addition, based on the data obtained by PCR analysis, we were also able to see that both cyclin A and cyclin B expression showed a peak at 72 h, followed by a gradual decrease at 96 h. STED microscopy data also confirmed that the main change in cyclin expression of MEG-01 cells occurs at 96 h, under simulated microgravity conditions, compared to static control. These results suggested that the cell cycle disruption induced by RPM-simulated microgravity in MEG-01 cells may be associated with the altered expression of the main regulators of the cell cycle. Thus, these data implicate the development of cellular stress in MEG-01 cells, which may be important for proliferating human cells exposed to microgravity in real space.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    急性肾损伤强烈上调体内近端小管中的转录因子Foxm1,而Foxm1在体外驱动上皮增殖。在这里,我们报道了Foxm1的缺失与肾单位特异性Cre驱动或可诱导的整体缺失可减少体内缺血性损伤后的近端小管增殖。Foxm1缺失导致AKI到CKD转换增加,纤维化增强,损伤后6周肾小管损伤持续。我们报道了细胞外信号调节激酶(ERK)在原代近端小管细胞中介导表皮生长因子受体(EGFR)下游的FOXM1诱导。我们通过在靶标下切割和使用核酸酶(CUT&RUN)释放来定义FOXM1基因组结合位点,并将位于FOXM1结合位点附近的基因与FOXM1敲低后原代近端小管细胞中下调的基因进行比较。对齐的数据集显示细胞周期调节细胞周期蛋白F(CCNF)作为推定的FOXM1靶标。我们确定了两个结合FOXM1并调节CCNF表达的顺式调节元件,证明Ccnf在肾损伤后被强烈诱导,并且Foxm1缺失在体内和体外消除了Ccnf的表达。CCNF的敲低也减少了体外近端小管的增殖。这些研究确定了调节损伤诱导的近端小管细胞增殖的ERK-FOXM1-CCNF信号通路。
    Acute kidney injury (AKI) strongly upregulates the transcription factor Foxm1 in the proximal tubule in vivo, and Foxm1 drives epithelial proliferation in vitro. Here, we report that deletion of Foxm1 either with a nephron-specific Cre driver or by inducible global deletion reduced proximal tubule proliferation after ischemic injury in vivo. Foxm1 deletion led to increased AKI to chronic kidney disease transition, with enhanced fibrosis and ongoing tubule injury 6 weeks after injury. We report ERK mediated FOXM1 induction downstream of the EGFR in primary proximal tubule cells. We defined FOXM1 genomic binding sites by cleavage under targets and release using nuclease (CUT&RUN) and compared the genes located near FOXM1 binding sites with genes downregulated in primary proximal tubule cells after FOXM1 knockdown. The aligned data sets revealed the cell cycle regulator cyclin F (CCNF) as a putative FOXM1 target. We identified 2 cis regulatory elements that bound FOXM1 and regulated CCNF expression, demonstrating that Ccnf is strongly induced after kidney injury and that Foxm1 deletion abrogates Ccnf expression in vivo and in vitro. Knockdown of CCNF also reduced proximal tubule proliferation in vitro. These studies identify an ERK/FOXM1/CCNF signaling pathway that regulates injury-induced proximal tubule cell proliferation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质合成在代谢上是昂贵的,必须与不断变化的细胞需求和营养可用性紧密协调。帽结合蛋白eIF4E使mRNA和翻译机制之间的最早接触,提供关键的监管关系。我们急剧消耗了这种必需蛋白质,并发现对细胞生长和蛋白质合成恢复的影响令人惊讶。矛盾的是,受损的蛋白质生物合成上调参与芳香族氨基酸分解代谢的基因,同时诱导由整合的应激反应因子GCN4驱动的氨基酸生物合成调节子。我们进一步鉴定了Pho85细胞周期蛋白5(PCL5)的翻译控制,Gcn4的负调节因子,在不同的翻译环境下提供一致的蛋白质与mRNA比率。这种调节部分取决于PCL55'UTR和poly(A)结合蛋白中独特的长poly(A)束。总的来说,这些结果突出了eIF4E如何将蛋白质合成与代谢基因调节联系起来,在环境挑战期间发现控制翻译的机制。
    Protein synthesis is metabolically costly and must be tightly coordinated with changing cellular needs and nutrient availability. The cap-binding protein eIF4E makes the earliest contact between mRNAs and the translation machinery, offering a key regulatory nexus. We acutely depleted this essential protein and found surprisingly modest effects on cell growth and recovery of protein synthesis. Paradoxically, impaired protein biosynthesis upregulated genes involved in the catabolism of aromatic amino acids simultaneously with the induction of the amino acid biosynthetic regulon driven by the integrated stress response factor GCN4. We further identified the translational control of Pho85 cyclin 5 (PCL5), a negative regulator of Gcn4, that provides a consistent protein-to-mRNA ratio under varied translation environments. This regulation depended in part on a uniquely long poly(A) tract in the PCL5 5\' UTR and poly(A) binding protein. Collectively, these results highlight how eIF4E connects protein synthesis to metabolic gene regulation, uncovering mechanisms controlling translation during environmental challenges.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号