Chitosan

壳聚糖
  • 文章类型: Journal Article
    The maintenance and expansion of human neural stem cells (hNSCs) in 3D tissue scaffolds is a promising strategy in producing cost-effective hNSCs with quality and quantity applicable for clinical applications. A few biopolymers have been extensively used to fabricate 3D scaffolds, including hyaluronic acid, collagen, alginate, and chitosan, due to their bioactive nature and availability. However, these polymers are usually applied in combination with other biomolecules, leading to their responses difficult to ascribe to. Here, scaffolds made of chitosan, alginate, hyaluronic acid, or collagen, are explored for hNSC expansion under xeno-free and chemically defined conditions and compared for hNSC multipotency maintenance. This study shows that the scaffolds made of pure chitosan support the highest adhesion and growth of hNSCs, yielding the most viable cells with NSC marker protein expression. In contrast, the presence of alginate, hyaluronic acid, or collagen induces differentiation toward immature neurons and astrocytes even in the maintenance medium and absence of differentiation factors. The cells in pure chitosan scaffolds preserve the level of transmembrane protein profile similar to that of standard culture. These findings point to the potential of using pure chitosan scaffolds as a base scaffolding material for hNSC expansion in 3D.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Infectious coryza (IC) is an acute upper respiratory disease of chicken caused by Avibacterium (A.) paragallinarum. This disease results in an increased culling rate in meat chicken and a marked decrease in egg production (10% to more than 40%) in laying and breeding hens. Vaccines were first used against IC and effectively controlled the disease. Nanotechnology provides an excellent way to develop a new generation of vaccines. NPs have been widely used in vaccine design as adjuvants and antigen delivery vehicles and as antibacterial agents; thus, they can be used as inactivators for bacterial culture. In this research, the antibacterial effects of several nanoparticles (NPs), such as silicon dioxide with chitosan (SiO2-CS), oleoyl-chitosan (O.CS), silicon dioxide (SiO2), and iron oxide (Fe3O4), on A. paragallinarum were studied. Additionally, different A. paragallinarum vaccines were made using the same nanomaterials at a concentration of 400 µg/ml to help control infectious coryza disease in chicken. A concentration of 400 µg/ml of all the NPs tested was the best concentration for the inactivation of A. paragallinarum. Additionally, this study showed that the infectious coryza vaccine adjuvanted with SiO2 NPs had the highest immune response, followed by the infectious coryza vaccine adjuvanted with Fe3O4 NPs, the infectious coryza vaccine adjuvanted with SiO2-CS NPs, and the infectious coryza vaccine adjuvanted with O.CS NPs in comparison with the infectious coryza vaccine adjuvanted with liquid paraffin (a commercial vaccine).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Solasonine (SS) and solamargine (SM) are alkaloids known for their antioxidant and anticancer properties, which can be further enhanced by encapsulating them in nanoparticles. This led to a study on the potential therapeutic benefits of SS and SM against bladder cancer when encapsulated in lipid-polymer hybrid nanoparticles (LPHNP). The LPHNP loaded with SS/SM were prepared using the emulsion and sonication method and their physical-chemical properties characterized. The biological effects of these nanoparticles were then tested in both 2D and 3D bladder cancer cell culture models, as well as in a syngeneic orthotopic mouse model based on the MB49 cell line and ethanol epithelial injury. The LPHNP-SS/SM had an average size of 130 nm, a polydispersity index of 0.22 and a positive zeta potential, indicating the presence of chitosan coating on the nanoparticle surface. The dispersion of LPHNP-SS/SM was found to be monodispersed with a span index of 0.539, as measured by nanoparticle tracking analysis (NTA). The recrystallization index, calculated from DSC data, was higher for the LPHNP-SS/SM compared to LPHNPs alone, confirming the presence of alkaloids within the lipid matrix. The encapsulation efficiency (EE%) was also high, with 91.08 % for SS and 88.35 % for SM. Morphological analysis by AFM and Cryo-TEM revealed that the nanoparticles had a spherical shape and core-shell structure. The study showed that the LPHNP-SS/SM exhibited mucoadhesive properties by physically interacting with mucin, suggesting a potential improvement in interaction with mucous membrane. Both the free and nanoencapsulated SS/SM demonstrated dose-dependent cytotoxicity against bladder cancer cell lines after 24 and 72 h of treatment. In 3D bladder cell culture, the nanoencapsulated SS/SM showed an IC50 two-fold lower than free SS/SM. In vivo studies, the LPHNP-SS/SM displayed an antitumoral effect at high doses, leading to a significant reduction in bladder volume compared to the positive control. However, there were observed instances of systemic toxicity and liver damage, indicated by elevated levels of transaminases (TGO and TGP). Overall, these results indicate that the LPHNPs effectively encapsulated SS/SM, showing high encapsulation efficiency and stability, along with promising in vitro and in vivo antitumoral effects against bladder cancer. Further evaluation of its systemic toxicity effects is necessary to ensure its safety and efficacy for potential clinical application.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Bone defects resulting from trauma, illness or congenital abnormalities represent a significant challenge to global health. Conventional treatments such as autographs and allografts have limitations, leading to the exploration of bone tissue engineering (BTE) as an alternative approach. This review aims to provide a comprehensive analysis of bone regeneration mechanisms with a focus on the role of chitosan-based biomaterials and mesenchymal stem cells (MSCs) in BTE. In addition, the physiochemical and biological properties of chitosan, its potential for bone regeneration when combined with other materials and the mechanisms through which MSCs facilitate bone regeneration were investigated. In addition, different methods of scaffold development and the incorporation of MSCs into chitosan-based scaffolds were examined. Chitosan has remarkable biocompatibility, biodegradability and osteoconductivity, making it an attractive choice for BTE. Interactions between transcription factors such as Runx2 and Osterix and signaling pathways such as the BMP and Wnt pathways regulate the differentiation of MSCs and bone regeneration. Various forms of scaffolding, including porous and fibrous injections, have shown promise in BTE. The synergistic combination of chitosan and MSCs in BTE has significant potential for addressing bone defects and promoting bone regeneration, highlighting the promising future of clinical challenges posed by bone defects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Biomaterials like chitosan, hydroxyapatite have been used in biomedical and pharmaceutical field, due to its valuable biochemical and physiological properties. In current work firstly our group has isolated a polysaccharide chitosan along with hydroxyapatite biomaterial from the same source by varying the process condition via greener approach. We have adapted greener approach for the isolation of chitosan within a short period of time and this is the very first report for the isolation of both chitosan and hydroxyapatite simultaneously from the same waste edible garden snail shells. Both these materials were thoroughly characterized by using UV, FT-IR, SEM techniques. Among synthetic colourants, congo red dye is recognized as carcinogens, which are usually used in the textile manufacturing. Interestingly, one of our biomaterial hydroxyapatite has shown good selectivity towards Congo red dye. The sensitivity range was obtained from 10 to 100 μM within the LOD of 101.52 nM. The developed sensor has been tested for various industrial effluents and shown good agreement with our results. Meanwhile these chitosan and hydroxyapatite have also been used as capping agent for the preparation of stable gold nanoparticles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    In situ forming poly(dimethylaminoethyl methacrylate-co-glycidylmethacrylate)/Chitosan, P(DMAEMA-co-GMA)/Chitosan, (PDG/CS) cryobeads based on \"dropwise freezing into cryogenic liquid method\" combined with \"blending with polymer method\" are promising for applications due to their pH-responsiveness and stability under physiological conditions. Based on classical contact mechanics, Hertzian elasticity of semi-interpenetrated network (semi-IPN) cryobeads was analyzed to examine whether there is a direct correlation between elastic properties of single particle and its macroscopic behavior. A one-step procedure has been proposed to design chitosan-interpenetrated cryobeads with a cationic nature via combination of structural properties as well as functionality of chitosan containing primary and secondary hydroxyl and amino groups. The study is focused on characterization of network formation kinetics in different shapes and how different production variables affect the elasticity/swelling performance of cross-linked system. The elastic properties of semi-IPN cryobeads were improved by both adding chitosan to copolymer PDG structure and lowering the gelation temperature to cryogelation conditions. The results obtained highlighted the importance of composition to modulate elasticity, the influence of preparation temperature and shape of cryobeads on their elasticity. Findings regarding the topography-dependent local elastic properties of chitosan-incorporated semi-IPN gels offer possibilities for modulating the behavior of chitosan-based soft materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The construction of N, P co-doped hierarchically porous carbons (NPHPC) by a facile and green approach is crucial for high-performance energy storage but still an enormous challenge. Herein, an environment-friendly \"in-situ co-doping, self-regulation-activation\" strategy is presented to one-pot synthesize NPHPC using a phytic acid-induced polyethyleneimine/chitosan gel (PEI-PA-CS) as single precursor. NPHPC displayed a specific surface area of up to 1494 m2 g-1, high specific capacitance of 449 F g-1 at 1 A g-1, outstanding rate capability and cycling durability in a wide temperature range (-20 to 60 °C). NPHPC and PEI-PA-CS electrolyte assembled symmetric quasi-solid-state flexible supercapacitor presents superb energy outputs of 27.06 Wh kg-1 at power density of 225 W kg-1. For capacitive deionization (CDI), NPHPC also exhibit an excellent salt adsorption capacity of 16.54 mg g-1 in 500 mg L-1 NaCl solution at a voltage of 1.4 V, and regeneration performance. This study provides a valuable reference for the rational design and synthesis of novel biomass-derived energy-storage materials by integrating phytic acid induced heteroatom doping and pore engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Developing plastic/fluorine/silicon-free and degradable water/oil-resistant coatings for paper-based packaging materials to replace disposable plastic products is a very effective way to solve the problem of \'white pollution\' or microplastics pollution. A novel water/oil-resistant coating was developed by alkyl ketene dimer (AKD)-based Pickering emulsion and chitosan in this work. Cellulose nanofibrils (CNF) were used as a stabilizing solid for AKD emulsion, with the addition of chitosan as an oil-resistance agent. The coating provides excellent hydrophobicity, water/oil resistance as well as good barrier properties. The water contact angle was as high as 130° and the minimum Cobb60 value was 5.7 g/m2, which was attributed to the hydrophobicity of AKD. In addition, the kit rating reached maximum 12/12 at coating weight of 8.26 g/m2 and the water vapor transmittance rate (WVTR) was reduced to 153.4 g/(m2⋅day) at the coating weight of 10.50 g/m2. The tensile strength of the paper was increased from 28.1 to 43.6 MPa after coating. Overall, this coating can effectively improve the performance of paper-based materials, which may play an important role in the process of replacing disposable plastic packaging with paper-based materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    土壤有机质在镉的吸附和固定化中起着重要作用。由于不同的有机物成分对镉吸附过程的影响不同,选择正确的有机底物并知道如何应用它可以改善镉的修复。这项研究比较了两种不同的有机分子的影响;壳聚糖和柠檬酸,酸性Ultisol中镉的吸附和形态形成。壳聚糖对Ultisol的吸附显着增加了土壤的正电荷,而柠檬酸的吸附增加了土壤的负电荷。在pH5.0时,过量壳聚糖中镉的最大吸附量比过量柠檬酸中的最大吸附量大341%。在pH4.0时,约有73-89%和60-62%的吸附镉与Fe/Mn氧化物和有机物/硫化物结合,而在pH5.0时,柠檬酸和壳聚糖的这一比例分别为77-100%和57-58%。壳聚糖络合能力的降低与高pH对壳聚糖结构的不稳定作用有关。此外,壳聚糖的顺序,柠檬酸,和镉被添加到吸附系统中影响吸附曲线,这在pH梯度上是不同的。具体来说,与在pH3.0-6.5内预吸附壳聚糖相比,添加壳聚糖和镉一起增加了吸附。然而,对于柠檬酸,与pH6.5和7.5相比,添加顺序对pH3.0-4.0之间的镉吸附没有显着影响,过量的柠檬酸通常会抑制吸附。鉴于柠檬酸在土壤中的作用是短暂的,壳聚糖是一种很好的固定镉的土壤改良材料。
    Soil organic matter plays an important role in cadmium adsorption and immobilization. Since different organic matter components affect cadmium adsorption processes differently, selecting the right organic substrate and knowing how to apply it could improve cadmium remediation. This study compares the effects of two contrasting organic molecules; chitosan and citric acid, on cadmium adsorption and speciation in acidic Ultisol. The adsorption of chitosan to Ultisol significantly increased the soil positive charge while adsorption of citric acid increased the soil negative charge. At pH 5.0, the maximum amount of cadmium adsorbed in excess chitosan was 341% greater than that in excess citric acid. About 73-89% and 60-62% of adsorbed cadmium were bound to Fe/Mn oxides and organic matter/sulfide at pH 4.0 while this fraction was 77-100% and 57-58% for citric acid and chitosan at pH 5.0, respectively. This decrease in the complexing ability of chitosan was related to the destabilizing effect of high pH on chitosan\'s structure. Also, the sequence through which chitosan, citric acid, and cadmium were added into the adsorption system influenced the adsorption profile and this was different along a pH gradient. Specifically, adding chitosan and cadmium together increased adsorption compared to when chitosan was pre-adsorbed within pH 3.0-6.5. However, for citric acid, the addition sequence had no significant effect on cadmium adsorption between pH 3.0-4.0 compared to pH 6.5 and 7.5, with excess citric acid generally inhibiting adsorption. Given that the action of citric acid is short-lived in soil, chitosan could be a good soil amendment material for immobilizing cadmium.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目前影响整个世界的最大问题之一是纺织工业无法妥善处理废水造成的水污染。由于其高度的环境稳定性及其对人类健康和生态系统的负面影响,水生环境中有毒纺织染料的存在引起了广泛的研究兴趣。因此,将甲基橙(MO)偶氮染料等有害染料转化为对环境安全的产品至关重要。在这种情况下,我们描述了使用铜硝普钠壳聚糖(Cu/SNP/Cts)纳米复合材料作为通过硼氢化钠(NaBH4)化学还原偶氮染料的纳米催化剂。Cu/SNP/Cts容易通过化学共沉淀以化学计量方式获得。X射线衍射(XRD)X射线光电子能谱(XPS),和傅里叶变换红外(FT-IR)光谱用于研究化学,阶段,composition,和分子相互作用。此外,使用扫描电子显微镜(SEM)检查了纳米材料的微观结构。利用紫外-可见光谱法研究了Cu硝普钠壳聚糖对偶氮染料还原的催化活性。Cu/SNP/Cts纳米复合材料表现出优异的性能,总还原时间为160s,伪一阶常数为0.0188s-1。此外,稳定性和可重用性研究表明,在5个周期内具有出色的可重用性,并且活动损失最小。开发的Cu/SNP/Cts纳米复合材料可作为有效的纳米催化剂,用于减少有害的甲基橙偶氮染料。
    One of the biggest issues affecting the entire world currently is water contamination caused by textile industries\' incapacity to properly dispose their wastewater. The presence of toxic textile dyes in the aquatic environment has attracted significant research interest due to their high environmental stability and their negative effects on human health and ecosystems. Therefore, it is crucial to convert the hazardous dyes such as methyl orange (MO) azo dye into environmentally safe products. In this context, we describe the use of Copper Nitroprusside Chitosan (Cu/SNP/Cts) nanocomposite as a nanocatalyst for the chemical reduction of azodyes by sodium borohydride (NaBH4). The Cu/SNP/Cts was readily obtained by chemical coprecipitation in a stoichiometric manner. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) spectroscopy were applied to investigate chemical, phase, composition, and molecular interactions. Additionally, Scanning electron microscope (SEM) was used to examine the nanomaterial\'s microstructure. UV-vis spectroscopy was utilized for studying the Cu Nitroprusside Chitosan\'s catalytic activity for the reduction of azodye. The Cu/SNP/Cts nanocomposite demonstrated outstanding performance with total reduction time 160 s and pseudo-first order constant of 0.0188 s-1. Additionally, the stability and reusability study demonstrated exceptional reusability up to 5 cycles with minimal activity loss. The developed Cu/SNP/Cts nanocomposite act as efficient nanocatalysts for the reduction of harmful Methyl orange azodye.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号