Chitosan

壳聚糖
  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Hemorrhage remains the leading cause of combat death and a major cause of death from potentially survivable injuries. Great strides have been made in controlling extremity hemorrhage with tourniquets, but not all injuries are amenable to tourniquet application. Topical hemostatic agents and dressings have also contributed to success in controlling extremity and compressible junctional hemorrhage, and their efficacy continues to increase as enhanced products are developed. Since the addition of Combat Gauze™ (Z-Medica Corporation, Wallingford, CT, USA; http://www.z-medica.com/) in April 2008 to the Tactical Combat Casualty Care (TCCC) Guidelines, there are consistent data from animal studies of severe hemorrhage that chitosan-based hemostatic gauze dressings developed for battlefield application are, at least, equally efficacious as Combat Gauze. Successful outcomes are also reported using newer chitosan-based dressings in civilian hospital-based surgical case reports and prehospital (battlefield) case reports and series. Additionally, there have been no noted complications or safety concerns in these cases or across many years of chitosan-based hemostatic dressing use in both the military and civilian prehospital sectors. Consequently, after a decade of clinical use, there is added benefit and a good safety record for using chitosan-based gauze dressings. For these reasons, many specific US military Special Operations Forces, NATO militaries, and emergency medical services (EMS) and law enforcement agencies have already implemented the widespread use of these new recommended chitosan-based hemostatic dressings. Based on the past battlefield success, this report proposes to keep Combat Gauze as the hemostatic dressing of choice along with the new addition of Celox™ Gauze (Medtrade Products Ltd., Crewe, UK; http://www.celoxmedical.com/usa/products /celox-gauze/) and ChitoGauze® (HemCon Medical Technologies, Portland, OR, USA; http://www.hemcon.com/) to the TCCC Guidelines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The American Society for Testing and Materials (ASTM) is making a concerted effort to establish standards and guidelines for the entire field of tissue-engineered medical products (TEMPS). Safety, consistency, and functionality of biomaterials used as matrices, scaffolds, and immobilizing agents in TEMPS are a concern. Therefore, the ASTM has established a number of task groups to produce standards and guidelines for such biomaterials. Alginate is a naturally occurring biomaterial used for immobilizing living cells to form an artificial organ, such as encapsulated pancreatic islets. In order to aid in successful clinical applications and to help expedite regulatory approval, the alginate used must be fully documented. The ASTM alginate guide gives information on selection of testing methodologies and safety criteria. Critical parameters such as monomer content, molecular weight, and viscosity, in addition to more general parameters, such as dry matter content, heavy metal content, bioburden, and endotoxin content are described in the ASTM document. In a like manner, the characterization parameters for chitosan, a bioadhesive polycationic polysaccharide, are described in a separate guide. For chitosan, the degree of deacetylation is of critical importance. Control of protein content and, hence, potential for hypersensitivity, endotoxin content, and total bioburden are important in chitosan preparations for TEMPS. Together these two guides represent part of the effort on behalf of the ASTM and other interested parties to ensure quality and standardization in TEMPS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号