Cell adhesion molecules

细胞粘附分子
  • 暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Identifying individuals who have Lynch syndrome (LS) involves a complex diagnostic work up that includes taking a detailed family history and a combination of various genetic and immunohistochemical tests. The National Society of Genetic Counselors (NSGC) and the Collaborative Group of the Americas on Inherited Colorectal Cancer (CGA-ICC) have come together to publish this clinical practice testing guideline for the evaluation of LS. The purpose of this practice guideline is to provide guidance and a testing algorithm for LS as well as recommendations on when to offer testing. This guideline does not replace a consultation with a genetics professional. This guideline includes explanations in support of this and a summary of background data. While this guideline is not intended to serve as a review of LS, it includes a discussion of background information on LS, and cites a number of key publications which should be reviewed for a more in-depth understanding of LS. These guidelines are intended for genetic counselors, geneticists, gastroenterologists, surgeons, medical oncologists, obstetricians and gynecologists, nurses and other healthcare providers who evaluate patients for LS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Protein-tyrosine phosphatase receptor type Z (Ptprz) has multiple substrate proteins, including G protein-coupled receptor kinase-interactor 1 (Git1), membrane-associated guanylate kinase, WW and PDZ domain-containing 1 (Magi1), and GTPase-activating protein for Rho GTPase (p190RhoGAP). We have identified a dephosphorylation site at Tyr-1105 of p190RhoGAP; however, the structural determinants employed for substrate recognition of Ptprz have not been fully defined. In the present study, we revealed that Ptprz selectively dephosphorylates Git1 at Tyr-554, and Magi1 at Tyr-373 and Tyr-858 by in vitro and cell-based assays. Of note, the dephosphorylation of the Magi1 Tyr-858 site required PDZ domain-mediated interaction between Magi1 and Ptprz in the cellular context. Alignment of the primary sequences surrounding the target phosphotyrosine residue in these three substrates showed considerable similarity, suggesting a consensus motif for recognition by Ptprz. We then estimated the contribution of surrounding individual amino acid side chains to the catalytic efficiency by using fluorescent peptides based on the Git1 Tyr-554 sequence in vitro. The typical substrate motif for the catalytic domain of Ptprz was deduced to be Glu/Asp-Glu/Asp-Glu/Asp-Xaa-Ile/Val-Tyr(P)-Xaa (Xaa is not an acidic residue). Intriguingly, a G854D substitution of the Magi1 Tyr-858 site matching better to the motif sequence turned this site to be susceptible to dephosphorylation by Ptprz independent of the PDZ domain-mediated interaction in cells. Furthermore, we found by database screening that the substrate motif is present in several proteins, including paxillin at Tyr-118, its major phosphorylation site. Expectedly, we verified that Ptprz efficiently dephosphorylates paxillin at this site in cells. Our study thus provides key insights into the molecular basis for the substrate recognition of Ptprz.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Sequence-specific oligonucleotide probes play a crucial role in hybridization techniques including PCR, DNA microarray and RNA interference. Once the entire genome becomes the search space for target genes/genomic sequences, however, cross-hybridization to non-target sequences becomes a problem. Large gene families with significant similarity among family members, such as the P450s, are particularly problematic. Additionally, accurate single nucleotide polymorphism (SNP) detection depends on probes that can distinguish between nearly identical sequences. Conventional oligonucleotide probes that are perfectly matched to target genes/genomic sequences are often unsuitable in such cases. Carefully designed mismatches can be used to decrease cross-hybridization potential, but implementing all possible mismatch probes is impractical. Our study provides guidelines for designing non-perfectly matched DNA probes to target DNA sequences as desired throughout the genome. These guidelines are based on the analysis of hybridization data between perfectly matched and non-perfectly matched DNA sequences (single-point or double-point mutated) calculated in silico. Large changes in hybridization temperature predicted by these guidelines for non-matched oligonucleotides fit independent experimental data very well. Applying the guidelines to find oligonucleotide microarray probes for P450 genes, we confirmed the ability of our point mutation method to differentiate the individual genes in terms of thermodynamic calculations of hybridization and sequence similarity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The p120(ctn)-binding partner Kaiso is a new member of the POZ-zinc finger family of transcription factors implicated in development and cancer. To understand the role of Kaiso in gene regulation and p120(ctn)-mediated signaling and adhesion, we sought to identify Kaiso-specific DNA binding sequences and potential target genes. Here we demonstrate that Kaiso is a dual specificity DNA-binding protein that recognizes the specific consensus sequence TCCTGCNA as well as methyl-CpG dinucleotides. A minimal core sequence CTGCNA was identified as sufficient for Kaiso binding. Two copies of the Kaiso-binding site are present in the human and murine matrilysin promoters, implicating matrilysin as a candidate target gene for Kaiso. In electrophoretic mobility shift assays, matrilysin promoter-derived oligonucleotide probes formed a complex with GST-Kaiso fusion proteins possessing the zinc finger domain but not with fusion proteins lacking the zinc fingers. We further determined that only Kaiso zinc fingers 2 and 3 were necessary and sufficient for sequence-specific DNA binding. Interestingly, Kaiso also possesses a methyl-CpG-dependent DNA-binding activity distinct from its sequence-specific DNA binding. However, Kaiso has a higher affinity for the TCCTGCNA consensus than for the methyl-CpG sites. Furthermore, the DNA-binding ability of Kaiso with either recognition site was inhibited by p120(ctn). Kaiso thus appears to have two modes of DNA binding and transcriptional repression, both of which may be modulated by its interaction with the adhesion cofactor p120(ctn).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Research on genetic causes of male and female infertility rapidly expanded in the last years, following the development of in vitro fertilising techniques. Genetic tests are now available to explore the cause of the infertility and assess the risk of a given couple to transmit its genetic characteristics. This allows at-risk couples to take an informed decision when electing for a medically assisted reproduction. It also allows the professionals to offer a prenatal diagnosis when appropriate. Thus, the genetic work-up of the infertile couple has become good practice for an appropriate diagnosis, treatment and prognostic assessment. The lack of national or international rules for the genetic approach to the infertile couple, prompted the Italian community of professionals in the field of reproductive medicine to join and set up guidelines for the genetic diagnosis of male and female infertility. The group of clinical and research experts is representative of 12 national scientific societies and was supported by external experts from four international societies. We examine the clinically relevant genetic causes of male and female infertility and suggest the category of patients for which each genetic test is recommended or optional, both for an accurate diagnosis and prior to ART.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Actin-based motility involves a cascade of binding interactions designed to assemble actin regulatory proteins into functional locomotory units. Listeria ActA surface protein contains a series of nearly identical EFPPPPTDE-type oligoproline sequences for binding vasodilator-stimulated phosphoprotein (VASP). The latter is a tetrameric protein with numerous GPP-PPP docking sites for profilin, a 15 kDa regulatory protein that promotes actin filament assembly. Analysis of known actin regulatory proteins led to the identification of distinct Actin-Based Motility homology sequences ABM-1; (D/E)FPPPPX(D/E); and ABM-2, XPPPPP (where X denotes G, A, L, and S).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Recent studies of the rat liver canalicular bile acid transporter/ecto-ATPase/cell CAM 105 (CBATP), a member of the carcinoembryonic antigen (CEA) supergene family, indicate that it is a multifunctional protein possessing bile acid efflux, ecto-ATPase, and intercellular aggregating properties. Cheung et al. (Cheung, P. H., Luo, W., Qiu, Y., Zhang, K. E., Millron, P., Lin, S. H. (1993) J. Biol. Chem. 268, 24303-24310) have shown that the amino-terminal Ig V-like domain of this protein is required for its aggregating properties, much like the homologous amino-terminal domain of CEA is required for its aggregating properties. The amino-terminal domains of both CBATP and CEA include a consensus ATPase sequence. Site-directed mutagenesis within this ATPase consensus sequence completely eliminates the ecto-ATPase activity of CBATP (Sippel, C. J., McCollum, M., Perlmutter, D. H. (1994) J. Biol. Chem. 269, 2820-2826). In this study we examined the possibility that it is this ATPase consensus sequence which is required for the cell aggregating properties of CBATP and CEA and whether there is a relationship between ATPase, aggregating, and bile acid efflux activities. For this we used a baculovirus vector to express in Sf9 cells wild type as well as mutant and chimeric CBATP and CEA molecules. The results indicate that Arg-98 in the ATPase consensus sequence of CBATP and the corresponding residue of CEA are essential for the aggregating properties of these molecules. Moreover Arg-98 is essential for CBATP to interact with itself, CEA to interact with itself, and CBATP to interact with CEA. However, the role of Arg-98 in aggregation is distinct from its role in ecto-ATPase activity and the aggregating properties cannot be attributed to a change in ATP metabolism in the pericellular milieu.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • DOI:
    文章类型: Journal Article
    A novel immunoglobulin-type protein expressed in blood vessels has been identified. The cDNA for AAMP (angio-associated, migratory cell protein) was first isolated from a human melanoma cell line during a search for motility-associated cell surface proteins. Upon analysis of the tissue distribution of AAMP, it was found to be expressed strongly in endothelial cells, cytotrophoblasts, and poorly differentiated colon adenocarcinoma cells found in lymphatics. The sequence of AAMP predicts a protein (M(r) 49,000) with distant identity (25%) to known proteins. It contains immunoglobulin-like domains [one with multiple homologies to deleted in colon carcinoma (DCC) protein], the WD40 repeat motif, and a heparin-binding consensus sequence. A 1.6-kilobase mRNA transcript of AAMP is detected in tissue culture cell lines and tissues. Affinity-purified polyclonal antibodies, anti-recombinant AAMP, and anti-peptide 189 (AAMP derived) recognize a M(r) 52,000 protein in human tissue and cellular extracts. The protein size is in keeping with the mRNA and predicted sequence. The AAMP-derived peptide, P189, contains a heparin-binding domain (dissociation constant, 14 pmol) and mediates heparin-sensitive cell adhesion. The shared expression of AAMP in endothelial cells, trophoblasts, and tumor cells implies a common function in migrating cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • DOI:
    文章类型: Journal Article
    To study the structural characteristics of E-selectin necessary for mediating cell adhesion, we examined the role of the consensus repeat (CR) domains in E-selectin function. Soluble constructs containing different numbers of CR domains were stably expressed in Chinese hamster ovary cells, purified to homogeneity, and characterized. The minimum functional unit of soluble E-selectin consisted of the lectin (Lec) and epidermal growth factor (EGF) domains alone (Lec-EGF) as indicated by its ability to mediate in vitro HL-60 cell adhesion. However, E-selectin containing all six CR domains (Lec-EGF-CR6) at its COOH terminus was the most potent in blocking neutrophil or HL-60 cell adhesion to either immobilized E-selectin or cytokine-stimulated human umbilical vein endothelial cells. This increased potency of Lec-EGF-CR6 in blocking cell adhesion was not due to CR-mediated oligomerization of the protein. Lec-EGF-CR6 was most likely monomeric in solution, as judged by gel filtration fast protein liquid chromatography, membrane ultrafiltration, and chemical cross-linking analysis. Therefore, although the lectin and EGF domains are necessary and sufficient for mediating cell adhesion, the additional six CR domains, present in native E-selectin, contribute to the enhanced binding of E-selectin to its ligand.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号