Bacillus thuringiensis

苏云金芽孢杆菌
  • 文章类型: Journal Article
    水平基因转移(HGT)是塑造细菌群落的主要驱动力。负责HGT的关键元件是缀合样事件和可传播的质粒。结合质粒可以促进其自身的转移以及共同驻留质粒的转移。蜡状芽孢杆菌及其亲属携带过多的质粒,包括共轭质粒,这是群体物种分化和规范的核心。自从40年前首次报道了蜡状芽孢杆菌(s.l.)菌株之间的共轭样事件以来,许多人已经研究了质粒在整个群体中转移的潜力,特别是对于编码主要毒素的质粒。多年来,已经报道了来自蜡状芽孢杆菌分离株的超过20个质粒为共轭的。然而,随着可用基因组数据的增加,计算机模拟分析表明,更多的质粒来自蜡状芽孢杆菌s.l.基因组存在自转移潜力。蜡状芽孢杆菌细菌占据不同的环境生态位,在实验室条件下进行模拟以研究与缀合相关的机制。与自然环境中发生的复杂相互作用相比,实验室交配条件仍然简单。鉴于健康,蜡样芽孢杆菌菌株的经济和生态重要性,最重要的是要考虑该细菌群内结合的影响。
    Horizontal gene transfer (HGT) is a major driving force in shaping bacterial communities. Key elements responsible for HGT are conjugation-like events and transmissible plasmids. Conjugative plasmids can promote their own transfer as well as that of co-resident plasmids. Bacillus cereus and relatives harbor a plethora of plasmids, including conjugative plasmids, which are at the heart of the group species differentiation and specification. Since the first report of a conjugation-like event between strains of B. cereus sensu lato (s.l.) 40 years ago, many have studied the potential of plasmid transfer across the group, especially for plasmids encoding major toxins. Over the years, more than 20 plasmids from B. cereus isolates have been reported as conjugative. However, with the increasing number of genomic data available, in silico analyses indicate that more plasmids from B. cereus s.l. genomes present self-transfer potential. B. cereus s.l. bacteria occupy diverse environmental niches, which were mimicked in laboratory conditions to study conjugation-related mechanisms. Laboratory mating conditions remain nonetheless simplistic compared to the complex interactions occurring in natural environments. Given the health, economic and ecological importance of strains of B. cereus s.l., it is of prime importance to consider the impact of conjugation within this bacterial group.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Insecticides are important in agriculture, to reduce human disease, and to decrease the nuisance of biting insects. Despite this, many have the potential for environmental impacts and toxicity in nontarget organisms. We reviewed data on the effects of insecticides based on toxins from Bacillus thuringiensis var. israelensis (Bti) and Bacillus thuringiensis var. kurstaki (Btk) on amphibians. The few peer-reviewed publications that are available for Bti provide variable conclusions, ranging from few observable effects to evidence of acute toxicity at high concentrations. We briefly highlight the current controversies and identify key areas for future investigation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The ongoing debate about the ecological effects of Bt-crops calls for thorough reviews about the impact on soil biodiversity and their ecosystem services. Transgenic Bt-crops have been genetically modified by inserting a Bacillus thuriengensis gene so the plant expresses a Cry toxin aimed for insect crop pests. Non-target soil invertebrates are particularly recognized for their contribution to plant nutrient availability and turnover of organic matter and it is therefore relevant to protect these invertebrate taxa. A number of studies have compared the population abundance and biomass of soil invertebrates in agricultural fields planted with genetically modified Bt crops and their conventional counterparts. Here, were review and analyze a selection of studies on Protista, nematodes, Collembola, mites, enchytraeids, and earthworms systematically to empower the evidence for asking the question whether population abundances and biomasses of soil invertebrates are changed by Bt crops compared to conventional crops. 6110 titles were captured, of which 38 studies passed our inclusion criteria, and a final number of 22 publications were subject to data extraction. A database with 2046 records was compiled covering 36 locations and the Bt types Cry1Ab, Cry1Ac, Cry3Bb1 and Cry3Aa. Comparative effect sizes in terms of Hedges\' g were calculated irrespectively of statistical significance of effects of the source studies. Cry effects on populations were compared across the studies in a meta-analysis employing a hierarchical Bayesian approach of weighted data according to the level of replication. The temporal development of effect sizes was modelled, thereby taking into account the variable duration of the field experiments. There was considerable variation among soil invertebrate orders, but the sample size was insufficient and the sample heterogeneity too large to draw any credible conclusions on the effect of Cry at the order level. However, across orders there was no significant effect of Cry on soil invertebrates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Bacillus thuringiensis (Bt) is one of the most promising biological control agents used commercially. Its products can contribute to reducing ecological and environmental problems associated with the use of chemical pesticides. Among the limiting factors of using Bt as bioinsecticide are the costs and ensuring its biological activity, which may vary according to the strain and culture conditions. This systematic review aimed to collect state-of-the-art information on the production of Bt endotoxins and to score the methodological feasibility of the data obtained, thus highlighting possible incoherencies. In order to consolidate recent findings and guide future studies, a total of 47 original articles from the last 10 years was analysed, with special attention being given to corroborating data, identifying inconsistencies and suggesting future adjustments so as to increase data reliability. With a maximum score of 8 points, three production parameters were classified on the following scale: preferable (score: 2), adequate (score: 1) and inadequate (score: 0), and another two parameter were classified as adequate (score: 1) or inadequate (score: 0). No article scored more than 6 out of the maximum of 8, thus reflecting the need for more detailed studies regarding Bt endotoxin production. The lack of standardization of methods and units of measurement also have made a comparison of results and an overall analysis difficult. Standards are suggested in the present study. The inclusion of bioassays and quantifying toxin via alkaline dilution are strongly recommended for studies of this nature, along with LC50 expressed in mg/L. Sixteen articles (34%) did not use either of these suggested methods, which indicates the need for further supporting studies. These findings reinforce the need for robust studies in this area, which could include the development of more affordable and effective bioinsecticides, thus increasing their competitiveness against insecticides derived from unsustainable sources.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Several trials and reviews have outlined the potential role of larviciding for malaria control in sub-Saharan Africa (SSA) to supplement the core indoor insecticide-based interventions. It has been argued that widespread use of long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) interventions in many parts of Africa result in many new areas with low and focal malaria transmission that can be targeted with larvicides. As some countries in SSA are making good progress in malaria control, larval source management, particularly with bacterial larvicides, could be included in the list of viable options to maintain the gains achieved while paving the way to malaria elimination. We conducted a review of published literature that investigated the application of bacterial larvicides, Bacillus thuringiensis var. israelensis (Bti) and/or Bacillus sphaericus (Bs) for malaria vector control in SSA. Data for the review were identified through PubMed, the extensive files of the authors and reference lists of relevant articles retrieved. A total of 56 relevant studies were identified and included in the review. The findings indicated that, at low application rates, bacterial larvicide products based on Bti and/or Bs were effective in controlling malaria vectors. The larvicide interventions were found to be feasible, accepted by the general community, safe to the non-target organisms and the costs compared fairly well with those of other vector control measures practiced in SSA. Our review suggests that larviciding should gain more ground as a tool for integrated malaria vector control due to the decline in malaria which creates more appropriate conditions for the intervention and to the recognition of limitations of insecticide-based vector control tools. The advancement of new technology for mapping landscapes and environments could moreover facilitate identification and targeting of the numerous larval habitats preferred by the African malaria vectors. To build sustainable anti-larval measures in SSA, there is a great need to build capacity in relevant specialties and develop organizational structures for governance and management of larval source management programmes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Bacillus thuringiensis (Bt) is a gram-positive spore-forming soil microorganism. Because the insecticidal activities of Bt are well known, it has been used as a tool for insect pest control worldwide. The beneficial features of Bt are not limited to its role as an insecticide; it is also used to control phytopathogenic fungi via chitinolytic activity. Bt-related studies are mostly focused on its biocontrol properties. However, studies focusing on the biostimulation and biofertilizer features of Bt, including its interactions with plants, are limited. Bt is a successful endophyte in many plants and can directly promote their development or indirectly induce plant growth by suppressing diseases. Although there are various commercial biopesticide Bt-based products, there are no commercial Bt-based plant growth-promoting rhizobacteria products on the biofertilizer market. As novel Bt strain exploration increases, there will likely be new Bt-based products with powerful biofertilizer activities in the future. The objective of this paper is to review, discuss, and evaluate the exceptional features of Bt as a plant growth promoter.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Coleoptera, the order of insects commonly referred to as beetles, are able to survive in various environments, and thus, comprise the largest order in the animal kingdom. Coleopterans mainly include coprophagous and phytophagous lineages, and many species of the latter lineage are serious pests. In addition to traditional chemical methods, biocontrol measures using various bacterial insecticidal proteins have also gradually been developed to control these insect pests. In this review, we summarized the possible coleopteran-pest-specific bacteria and insecticidal proteins that have been reported in the literature thus far and have provided a comprehensive overview and long-term guidance for the control of coleopteran pests in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Ticks (Acari:Ixodoidea) are important ectoparasites infesting livestock and human populations around the globe. Ticks can cause damage directly by affecting the site of infestation, or indirectly as vectors of a wide range of protozoa, bacteria and viruses which ultimately lead to lowered productivity of livestock populations. Hyalomma is a genus of hard ticks, having more than 30 species well-adapted to hot, humid and cold climates. Habitat diversity, vector ability, and emerging problem of acaricidal resistance in enzootic regions typify this genus in various countries around the world. This paper reviews the epidemiology, associated risk factors (temperature, climate, age, sex, breed etc.), vector role, vector-pathogen association, and reported control strategies of genus Hyalomma. The various proteins in saliva of Hyalomma secreted into the blood stream of host and the prolonged attachment are responsible for the successful engorgement of female ticks in spite of host immune defense system. The various immunological approaches that have been tried by researchers in order to cause tick rejection are also discussed. In addition, the novel biological control approaches involving the use of entomo-pathogenic nematodes and Bacillus thuringiensis (B. thuringiensis) serovar thuringiensis H14; an endotoxin, for their acaricidal effect on different species and life cycle stages of Hyalomma are also presented.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The aquatic environment is strongly connected to the surrounding agricultural landscapes, which regularly serve as sources of stressors such as agrochemicals. Genetically modified crops, which are cultivated on a large scale in many countries, may also act as stressors. Despite the commercial use of genetically modified organisms (GMOs) for over 20years, their impact on the aquatic environment came into focus only 10years ago. We present the status quo of the available scientific data in order to provide an input for informed aquatic risk assessment of GMOs. We could identify only 39 publications, including 84 studies, dealing with GMOs in the aquatic environment, and our analysis shows substantial knowledge gaps. The available information is restricted to a small number of crop plants, traits, events, and test organisms. The analysis of effect studies reveals that only a narrow range of organisms has been tested and that studies on combinatorial actions of stressors are virtually absent. The analysis of fate studies shows that many aspects, such as the fate of leached toxins, degradation of plant material, and distribution of crop residues in the aquatic habitat, are insufficiently investigated. Together with these research needs, we identify standardization of test methods as an issue of high priority, both for research and risk assessment needed for GMO regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Although the use of chemical pesticides has decreased in recent years, it is still a common method of pest control. However, chemical use leads to challenging problems. The harm caused by these chemicals and the length of time that they will remain in the environment is of great concern to the future and safety of humans. Therefore, developing new pest control agents that are safer and environmentally compatible, as well as assuring their widespread use is important. Entomopathogenic agents are microorganisms that play an important role in the biological control of pest insects and are eco-friendly alternatives to chemical control. They consist of viruses (non-cellular organisms), bacteria (prokaryotic organisms), fungi and protists (eukaryotic organisms), and nematodes (multicellular organisms). Genetic modification (recombinant technology) provides potential new methods for developing entomopathogens to manage pests. In this review, we focus on the important roles of recombinant entomopathogens in terms of pest insect control, placing them into perspective with other views to discuss, examine and evaluate the use of entomopathogenic agents in biological control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号