3D segmentation

3D 分割
  • 文章类型: Journal Article
    三维可视化和分割越来越广泛地应用于物理,生物和医学科学,促进先进的调查方法。然而,在主流3D可视化平台的范围内,分段体积或结果的集成和再现仍然受到兼容性约束的阻碍。这些障碍不仅挑战了结果的复制,而且阻碍了交叉验证3D可视化输出准确性的过程。为了解决这个差距,我们开发了一种在Drishti的开源框架内实现的创新的重新可视化方法,三维可视化软件。利用四个动物样本和三个主流3D可视化平台作为案例研究,我们的方法证明了分段结果到Drishti的无缝可转移性。此功能有效地促进了身份验证的新途径,并增强了对分段数据的审查。通过促进这种互操作性,我们的方法强调了在不同科学领域的准确性验证和合作研究工作方面取得重大进展的潜力.
    3D visualization and segmentation are increasingly widely used in physical, biological and medical science, facilitating advanced investigative methodologies. However, the integration and reproduction of segmented volumes or results across the spectrum of mainstream 3D visualization platforms remain hindered by compatibility constraints. These barriers not only challenge the replication of findings but also obstruct the process of cross-validating the accuracy of 3D visualization outputs. To address this gap, we developed an innovative revisualization method implemented within the open-source framework of Drishti, a 3D visualization software. Leveraging four animal samples alongside three mainstream 3D visualization platforms as case studies, our method demonstrates the seamless transferability of segmented results into Drishti. This capability effectively fosters a new avenue for authentication and enhanced scrutiny of segmented data. By facilitating this interoperability, our approach underscores the potential for significant advancements in accuracy validation and collaborative research efforts across diverse scientific domains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    中心性浆液性脉络膜视网膜病变(CSCR)是全球范围内视力障碍的重要原因,光动力疗法(PDT)正在成为一种有前途的治疗策略。在光学相干断层扫描(OCT)扫描中精确分割流体区域并预测对PDT治疗的响应的能力可以显著增强患者结果。本文介绍了一种新颖的深度学习(DL)方法,用于OCT扫描中流体区域的自动3D分割。随后对CSCR患者进行PDT应答分析。我们的方法利用来自OCT扫描的丰富3D上下文信息来训练准确描绘流体区域的模型。该模型不仅大大减少了分割所需的时间和精力,而且提供了一种标准化的技术,促进进一步的大规模研究。此外,通过合并治疗前和治疗后的OCT扫描,我们的模型能够预测PDT响应,因此能够制定个性化治疗策略和优化患者管理。为了验证我们的方法,我们采用了一个强大的数据集,包括2,769个OCT扫描(124个3D体积),获得的结果非常令人满意,优于当前最先进的方法。这项研究标志着DL进步与实际临床应用整合的重要里程碑,推动我们朝着改善CSCR管理迈出了一步。此外,所开发的方法和系统可以进行调整和推断,以应对其他视网膜病变的诊断和治疗中的类似挑战,有利于更全面和个性化的病人护理。
    Central Serous Chorioretinopathy (CSCR) is a significant cause of vision impairment worldwide, with Photodynamic Therapy (PDT) emerging as a promising treatment strategy. The capability to precisely segment fluid regions in Optical Coherence Tomography (OCT) scans and predict the response to PDT treatment can substantially augment patient outcomes. This paper introduces a novel deep learning (DL) methodology for automated 3D segmentation of fluid regions in OCT scans, followed by a subsequent PDT response analysis for CSCR patients. Our approach utilizes the rich 3D contextual information from OCT scans to train a model that accurately delineates fluid regions. This model not only substantially reduces the time and effort required for segmentation but also offers a standardized technique, fostering further large-scale research studies. Additionally, by incorporating pre- and post-treatment OCT scans, our model is capable of predicting PDT response, hence enabling the formulation of personalized treatment strategies and optimized patient management. To validate our approach, we employed a robust dataset comprising 2,769 OCT scans (124 3D volumes), and the results obtained were significantly satisfactory, outperforming the current state-of-the-art methods. This research signifies an important milestone in the integration of DL advancements with practical clinical applications, propelling us a step closer towards improved management of CSCR. Furthermore, the methodologies and systems developed can be adapted and extrapolated to tackle similar challenges in the diagnosis and treatment of other retinal pathologies, favoring more comprehensive and personalized patient care.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在基于LiDAR传感器的自动驾驶汽车的背景下,分割网络在准确识别和分类对象中起着至关重要的作用。然而,用于训练网络的LiDAR传感器类型与部署在现实驾驶环境中的LiDAR传感器类型之间的差异可能会由于输入张量属性的差异而导致性能下降,比如x,y,和z坐标,和强度。为了解决这个问题,我们提出了新颖的强度渲染和数据插值技术。我们的研究通过将这些方法应用于现实场景中的对象跟踪来评估这些方法的有效性。提出的解决方案旨在协调传感器数据之间的差异,从而提高自主车辆感知系统的深度学习网络的性能和可靠性。此外,我们的算法防止性能下降,即使不同类型的传感器用于训练数据和实际应用。这种方法允许使用公开可用的开放数据集,而无需花费大量时间使用实际部署的传感器进行数据集构建和注释。从而大大节省时间和资源。当应用提出的方法时,与没有这些增强的场景相比,我们观察到mIoU性能提高了大约20%。
    In the context of LiDAR sensor-based autonomous vehicles, segmentation networks play a crucial role in accurately identifying and classifying objects. However, discrepancies between the types of LiDAR sensors used for training the network and those deployed in real-world driving environments can lead to performance degradation due to differences in the input tensor attributes, such as x, y, and z coordinates, and intensity. To address this issue, we propose novel intensity rendering and data interpolation techniques. Our study evaluates the effectiveness of these methods by applying them to object tracking in real-world scenarios. The proposed solutions aim to harmonize the differences between sensor data, thereby enhancing the performance and reliability of deep learning networks for autonomous vehicle perception systems. Additionally, our algorithms prevent performance degradation, even when different types of sensors are used for the training data and real-world applications. This approach allows for the use of publicly available open datasets without the need to spend extensive time on dataset construction and annotation using the actual sensors deployed, thus significantly saving time and resources. When applying the proposed methods, we observed an approximate 20% improvement in mIoU performance compared to scenarios without these enhancements.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们的研究调查了将先前的解剖学知识纳入深度学习(DL)方法的潜在好处,该方法设计用于在胸部CT扫描中自动分割肺叶。
    我们介绍了一种基于DL的自动化方法,该方法利用来自肺部血管系统的解剖信息来指导和增强分割过程。这涉及利用肺血管连通性(LVC)图,编码相关肺血管解剖数据。我们的研究探讨了nnU-Net框架内三种不同神经网络架构的性能:独立的U-Net,多任务U-Net,和级联U网。
    实验结果表明,在DL模型中包含LVC信息可以提高分割精度,特别是,在具有挑战性的呼气胸部CT容积边界区域。此外,我们的研究证明了LVC增强模型泛化能力的潜力。最后,通过对10例COVID-19患者的肺叶分割,评估了该方法的鲁棒性,证明了其在肺部疾病中的适用性。
    结合先前的解剖信息,例如LVC,进入DL模型显示出增强细分性能的希望,特别是在边界区域。然而,这种改进的程度有局限性,进一步探索其实际适用性。
    UNASSIGNED: Our study investigates the potential benefits of incorporating prior anatomical knowledge into a deep learning (DL) method designed for the automated segmentation of lung lobes in chest CT scans.
    UNASSIGNED: We introduce an automated DL-based approach that leverages anatomical information from the lung\'s vascular system to guide and enhance the segmentation process. This involves utilizing a lung vessel connectivity (LVC) map, which encodes relevant lung vessel anatomical data. Our study explores the performance of three different neural network architectures within the nnU-Net framework: a standalone U-Net, a multitasking U-Net, and a cascade U-Net.
    UNASSIGNED: Experimental findings suggest that the inclusion of LVC information in the DL model can lead to improved segmentation accuracy, particularly, in the challenging boundary regions of expiration chest CT volumes. Furthermore, our study demonstrates the potential for LVC to enhance the model\'s generalization capabilities. Finally, the method\'s robustness is evaluated through the segmentation of lung lobes in 10 cases of COVID-19, demonstrating its applicability in the presence of pulmonary diseases.
    UNASSIGNED: Incorporating prior anatomical information, such as LVC, into the DL model shows promise for enhancing segmentation performance, particularly in the boundary regions. However, the extent of this improvement has limitations, prompting further exploration of its practical applicability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    鼻旁窦,由八个充满空气的空腔组成的两侧对称系统,代表马身体最复杂的部分之一。这项研究旨在从马头的计算机断层扫描(CT)图像中提取形态测量,并实施聚类分析,以计算机辅助识别与年龄相关的变化。18匹尸体马的头,2-25岁,被CT成像和分割以提取它们的体积,表面积,额窦(FS)的相对密度,背甲窦(DCS),腹侧耳廓窦(VCS),鼻端上颌窦(RMS),上颌窦(CMS),蝶窦(SS),腭窦(PS),和中耳窦(MCS)。数据分为年轻,中年,和老马群,并使用K-means聚类算法进行聚类。形态测量根据马匹的鼻窦位置和年龄而变化,而不是身体侧。VCS的体积和表面积,RMS,CMS随着马龄的增加而增加。RMS的精度值为0.72,CMS为0.67,VCS为0.31,RMS和CMS证实了基于CT的马鼻旁窦3D图像的年龄相关聚类的可能性,但VCS证明了这一可能性.
    The paranasal sinuses, a bilaterally symmetrical system of eight air-filled cavities, represent one of the most complex parts of the equine body. This study aimed to extract morphometric measures from computed tomography (CT) images of the equine head and to implement a clustering analysis for the computer-aided identification of age-related variations. Heads of 18 cadaver horses, aged 2-25 years, were CT-imaged and segmented to extract their volume, surface area, and relative density from the frontal sinus (FS), dorsal conchal sinus (DCS), ventral conchal sinus (VCS), rostral maxillary sinus (RMS), caudal maxillary sinus (CMS), sphenoid sinus (SS), palatine sinus (PS), and middle conchal sinus (MCS). Data were grouped into young, middle-aged, and old horse groups and clustered using the K-means clustering algorithm. Morphometric measurements varied according to the sinus position and age of the horses but not the body side. The volume and surface area of the VCS, RMS, and CMS increased with the age of the horses. With accuracy values of 0.72 for RMS, 0.67 for CMS, and 0.31 for VCS, the possibility of the age-related clustering of CT-based 3D images of equine paranasal sinuses was confirmed for RMS and CMS but disproved for VCS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    3-D中大型和复杂的连体树结构的鲁棒分割是计算机视觉中的主要挑战。在计算生物学中尤其如此,我们经常遇到大的数据结构,但是数量很少,这给学习算法带来了难题。我们证明了将多尺度开口与测地路径传播相结合,可以揭示这个经典的机器视觉挑战,同时通过开发无监督的视觉几何方法(数字拓扑/形态计量学)来规避学习问题。所提出的MSO-GP方法的新颖性来自于由联合结构的骨架引导的测地路径传播,这有助于在该领域的一项特别具有挑战性的任务中实现鲁棒的分割结果。非对比肺计算机断层扫描血管造影照片中的动脉-静脉分离。这是测量血管几何形状以诊断肺部疾病并开发基于图像的表型的重要的第一步。我们首先在合成数据上展示概念验证结果,然后验证在猪肺和人肺数据上的性能,与竞争方法相比,分割时间和用户干预需求更少。
    Robust segmentation of large and complex conjoined tree structures in 3-D is a major challenge in computer vision. This is particularly true in computational biology, where we often encounter large data structures in size, but few in number, which poses a hard problem for learning algorithms. We show that merging multiscale opening with geodesic path propagation, can shed new light on this classic machine vision challenge, while circumventing the learning issue by developing an unsupervised visual geometry approach (digital topology/morphometry). The novelty of the proposed MSO-GP method comes from the geodesic path propagation being guided by a skeletonization of the conjoined structure that helps to achieve robust segmentation results in a particularly challenging task in this area, that of artery-vein separation from non-contrast pulmonary computed tomography angiograms. This is an important first step in measuring vascular geometry to then diagnose pulmonary diseases and to develop image-based phenotypes. We first present proof-of-concept results on synthetic data, and then verify the performance on pig lung and human lung data with less segmentation time and user intervention needs than those of the competing methods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:过敏性鼻炎是一个广泛的健康问题,传统治疗往往被证明是痛苦和无效的。针对翼腭窝的针刺被证明是有效的,但由于附近复杂的解剖结构而变得复杂。
    方法:为了提高针对翼腭窝的安全性和精确性,我们引入了一个基于深度学习的模型来细化翼腭窝的分割。我们的模型使用DenseASPP扩展了U-Net框架,并集成了一种注意力机制,以提高翼腭窝的定位和分割精度。
    结果:该模型实现了93.89%的骰子相似系数和2.53mm的95%Hausdorff距离,具有显著的精度。值得注意的是,它只使用1.98M参数。
    结论:我们的深度学习方法在定位和分割翼腭窝方面取得了重大进展,为翼腭窝辅助穿刺提供可靠的指导依据。
    BACKGROUND: Allergic rhinitis constitutes a widespread health concern, with traditional treatments often proving to be painful and ineffective. Acupuncture targeting the pterygopalatine fossa proves effective but is complicated due to the intricate nearby anatomy.
    METHODS: To enhance the safety and precision in targeting the pterygopalatine fossa, we introduce a deep learning-based model to refine the segmentation of the pterygopalatine fossa. Our model expands the U-Net framework with DenseASPP and integrates an attention mechanism for enhanced precision in the localisation and segmentation of the pterygopalatine fossa.
    RESULTS: The model achieves Dice Similarity Coefficient of 93.89% and 95% Hausdorff Distance of 2.53 mm with significant precision. Remarkably, it only uses 1.98 M parameters.
    CONCLUSIONS: Our deep learning approach yields significant advancements in localising and segmenting the pterygopalatine fossa, providing a reliable basis for guiding pterygopalatine fossa-assisted punctures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:这里,我们提出了一项概念验证研究,该研究使用回肠袋-肛门吻合术(IPAA)的虚拟和打印3D模型对正常袋患者和有机械袋并发症的患者进行三维(3D)袋成像.
    方法:我们进行了回顾性研究,从我们的囊袋登记中确定了10例有或没有囊袋功能障碍的患者的便利样本的描述性病例系列,这些患者接受了适合于分割的CT扫描.介绍了临床医生驱动的自动3D重建中涉及的步骤。
    结果:三例患者接受了CT成像,发现没有原发性囊袋病理,和7例具有已知的囊袋病理的患者,可通过3D重建识别,包括囊袋狭窄,兆包,小袋扭转,扭曲的小袋进行了3D虚拟建模;一个正常的和一个扭曲的小袋进行了3D打印。我们发现3D囊术可靠地识别了钉合线(囊体,肛门直肠圆形和横向,和J的尖端),装订线之间的关系,和小袋形态的变化,和小袋病理学。
    结论:使用现成的技术对IPAA形态进行三维重建是高度可行的。在我们的实践中,我们发现,3D囊袋造影是诊断各种机械性囊袋并发症和改进囊袋抢救策略计划的非常有用的辅助手段.鉴于其易用性和有助于理解袋的结构和功能,我们已经开始将3D囊袋造影术常规整合到我们的临床囊袋转诊实践中.需要进一步的研究来正式评估该技术的价值,以帮助诊断囊袋病理。
    BACKGROUND: Herein, we present a proof-of-concept study of 3-dimensional (3D) pouchography using virtual and printed 3D models of ileal pouch-anal anastomosis (IPAA) in patients with normal pouches and in cases of mechanical pouch complications.
    METHODS: We performed a retrospective, descriptive case series of a convenience sample of 10 pouch patients with or without pouch dysfunction who had CT scans appropriate for segmentation were identified from our pouch registry. The steps involved in clinician-driven automated 3D reconstruction are presented.
    RESULTS: Three patients who underwent CT imaging and were found to have no primary pouch pathology, and seven patients with known pouch pathology identifiable with 3D reconstruction including pouch strictures, megapouch, pouch volvulus, and twisted pouches underwent 3D virtual modeling; one normal and one twisted pouch were 3D printed. We discovered that 3D pouchography reliably identified staple lines (pouch body, anorectal circular and transverse, and tip of J), the relationship between staple lines, and variations in pouch morphology, and pouch pathology.
    CONCLUSIONS: Three-dimensional reconstruction of IPAA morphology is highly feasible using readily available technology. In our practice, we have found 3D pouchography to be an extremely useful adjunct to diagnose various mechanical pouch complications and improve planning for pouch salvage strategies. Given its ease of use and helpfulness in understanding the pouch structure and function, we have started to routinely integrate 3D pouchography into our clinical pouch referral practice. Further study is needed to formally assess to value of this technique to aid in the diagnosis of pouch pathology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    线粒体是动态的细胞器,可根据功能需求改变其形态特征。因此,线粒体形态是线粒体功能和细胞健康的重要指标。显微镜图像中线粒体网络的可靠分割是进一步定量评估其形态的关键第一步。然而,三维线粒体分割,特别是在具有复杂网络形态的细胞中,比如在高度极化的细胞中,仍然具有挑战性。为了提高超分辨率显微图像中线粒体的三维分割质量,我们采用了机器学习的方法,使用3D可训练的Weka,ImageJ插件。我们证明了,与其他常用方法相比,我们的方法有效地分割了线粒体网络,在不同极化上皮细胞模型中提高了准确性,包括分化的人视网膜色素上皮(RPE)细胞。此外,在细分后使用几种工具进行定量分析,我们发现巴弗洛霉素处理的RPE细胞中线粒体片段化。
    Mitochondria are dynamic organelles that alter their morphological characteristics in response to functional needs. Therefore, mitochondrial morphology is an important indicator of mitochondrial function and cellular health. Reliable segmentation of mitochondrial networks in microscopy images is a crucial initial step for further quantitative evaluation of their morphology. However, 3D mitochondrial segmentation, especially in cells with complex network morphology, such as in highly polarized cells, remains challenging. To improve the quality of 3D segmentation of mitochondria in super-resolution microscopy images, we took a machine learning approach, using 3D Trainable Weka, an ImageJ plugin. We demonstrated that, compared with other commonly used methods, our approach segmented mitochondrial networks effectively, with improved accuracy in different polarized epithelial cell models, including differentiated human retinal pigment epithelial (RPE) cells. Furthermore, using several tools for quantitative analysis following segmentation, we revealed mitochondrial fragmentation in bafilomycin-treated RPE cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号