关键词: Hodgkin-Huxley (HH) model Living cells dispersion electric model electroporation

Mesh : Action Potentials Models, Biological Electroporation Cell Survival / radiation effects Electricity Humans

来  源:   DOI:10.1080/15368378.2024.2372107

Abstract:
To enhance our understanding of electroporation and optimize the pulses used within the frequency range of 1 kHz to 100 MHz, with the aim of minimizing side effects such as muscle contraction, we introduce a novel electrical model, structured as a 2D representation employing exclusively lumped elements. This model adeptly encapsulates the intricate dynamics of living cells\' impedance variation. A distinguishing attribute of the proposed model lies in its capacity to decipher the distribution of transmembrane potential across various orientations within living cells. This aspect bears critical importance, particularly in contexts such as electroporation and cellular stimulation, where precise knowledge of potential gradients is pivotal. Furthermore, the augmentation of the proposed electrical model with the Hodgkin-Huxley (HH) model introduces an additional dimension. This integration augments the model\'s capabilities, specifically enabling the exploration of muscle cell stimulation and the generation of action potentials. This broader scope enhances the model\'s utility, facilitating comprehensive investigations into intricate cellular behaviors under the influence of external electric fields.
In our research, we’ve introduced an enhanced electrical model for living cells. This model simplifies cell behavior using only basic electrical components like resistors and capacitors. It’s designed to mimic the real electrical properties of cells, particularly the cell membrane, which can change in response to electricity at different frequencies, ranging from 1 kHz to 100 MHz. This frequency range is essential for studying processes like electroporation, a technique used in various medical applications.Our model is represented in a two-dimensional structure, making it a handy tool for identifying transmembrane potential distributions, a critical factor in electroporation procedures. This means we can better understand how cells react to electrical impulses, which is crucial for improving electroporation techniques.Additionally, we’ve extended our model to include muscle cells by incorporating the Hodgkin-Huxley model, a well-established model for understanding electrical behavior in muscle cells. This allows us to study how muscles contract when exposed to different electrical pulses, a common side effect of electroporation procedures. By examining various pulse characteristics, we can determine which ones are best for minimizing muscle contractions during electroporation.In summary, our research has led to the development of a versatile electrical model for living cells. It not only helps us understand how cells respond to electricity in the context of electroporation but also provides insights into muscle contractions and how to optimize electrical pulses for medical treatments.
摘要:
为了增强我们对电穿孔的理解并优化1kHz至100MHz频率范围内使用的脉冲,目的是尽量减少肌肉收缩等副作用,我们介绍了一种新的电气模型,结构为采用专门集总元素的2D表示。该模型巧妙地封装了活细胞阻抗变化的复杂动力学。所提出的模型的区别属性在于其破译跨膜电位在活细胞内各个方向上的分布的能力。这方面至关重要,特别是在电穿孔和细胞刺激等情况下,在那里,对势能梯度的精确了解是至关重要的。此外,用Hodgkin-Huxley(HH)模型增强所提出的电气模型,引入了一个额外的维度。这种集成增强了模型的功能,特别是能够探索肌肉细胞刺激和产生动作电位。这个更广泛的范围增强了模型的实用性,促进对外部电场影响下复杂细胞行为的全面研究。
在我们的研究中,我们已经为活细胞引入了一个增强的电模型。该模型仅使用电阻器和电容器等基本电气组件来简化电池行为。它被设计用来模仿细胞的真实电学特性,特别是细胞膜,它可以响应不同频率的电力而改变,范围从1kHz到100MHz。这个频率范围对于研究电穿孔等过程至关重要,用于各种医疗应用的技术。我们的模型以二维结构表示,使其成为识别跨膜电位分布的便捷工具,电穿孔程序中的一个关键因素。这意味着我们可以更好地理解细胞对电脉冲的反应,这对于改进电穿孔技术至关重要。此外,我们通过结合Hodgkin-Huxley模型将我们的模型扩展到包括肌肉细胞,一个很好的模型,用于理解肌肉细胞的电行为。这使我们能够研究暴露于不同电脉冲时肌肉是如何收缩的,电穿孔程序的常见副作用。通过检查各种脉冲特性,我们可以确定哪种方法最适合减少电穿孔过程中的肌肉收缩。总之,我们的研究导致了一种用于活细胞的通用电模型的发展。它不仅可以帮助我们了解细胞在电穿孔的背景下对电的反应,还可以提供有关肌肉收缩以及如何优化电脉冲以进行医学治疗的见解。
公众号