关键词: DFT studies electrocatalytic water splitting heterostructure layered double hydroxides over potential stability

来  源:   DOI:10.1002/smll.202403908

Abstract:
Hydrogen is a fuel of the future that has the potential to replace conventional fossil fuels in several applications. The quickest and most effective method of producing pure hydrogen with no carbon emissions is water electrolysis. Developing highly active electrocatalysts is crucial due to the slow kinetics of oxygen and hydrogen evolution, which limit the usage of precious metals in water splitting. Interfacial engineering of heterostructures has sparked widespread interest in improving charge transfer efficiency and optimizing adsorption/desorption energetics. The emergence of a built-in-electric field between RuO2 and MgFe-LDH improves the catalytic efficiency toward water splitting reaction. However, LDH-based materials suffer from poor conductivity, necessitating the design of 1D materials by integration of RuO2/ MgFe-LDH to enhance catalytic properties through large surface areas and high electronic conductivity. Experimental results demonstrate lower overpotentials (273 and 122 mV at 10 mA cm-2) and remarkable stability (60 h) for the RuO2/MgFe-LDH/Fiber heterostructure in OER (1 m KOH) and HER (0.5 m H2SO4) reactions. Density functional theory (DFT) unveils a synergistic mechanism at the RuO2/MgFe-LDH interface, leading to enhanced catalytic activity in OER and improved adsorption energy for hydrogen atoms, thereby facilitating HER catalysis.
摘要:
氢是未来的燃料,有可能在多种应用中取代传统的化石燃料。生产纯氢而没有碳排放的最快和最有效的方法是水电解。由于氧气和氢气析出的动力学缓慢,开发高活性电催化剂至关重要。这限制了贵金属在水分解中的使用。异质结构的界面工程引起了人们对提高电荷转移效率和优化吸附/解吸能量学的广泛兴趣。RuO2和MgFe-LDH之间内置电场的出现提高了水分解反应的催化效率。然而,基于LDH的材料具有较差的导电性,需要通过集成RuO2/MgFe-LDH来设计1D材料,以通过大表面积和高电子电导率来增强催化性能。实验结果表明,在OER(1mKOH)和HER(0.5mH2SO4)反应中,RuO2/MgFe-LDH/Fiber异质结构的过电势较低(在10mAcm-2时为273和122mV)和显着的稳定性(60h)。密度泛函理论(DFT)揭示了RuO2/MgFe-LDH界面的协同机制,导致OER中催化活性增强和氢原子吸附能提高,从而促进HER催化。
公众号