heterostructure

异质结构
  • 文章类型: Journal Article
    已在TiO2电极上用硫化铜(CuS)和六角形硫化锰(γ-MnS)作为光子吸收剂钝化了三种不同的改性太阳能电池。MnS是使用(a-c)双(N-Piperl-N-p-anisildithebamasto)锰(II)配合物Mn[N-Piper-N-p-Anisdtc]作为(MnS_1)制备的,N-对-茴香二硫代氨基甲酸Mn[N-对-茴香tc]为(MnS_2),N-哌啶基二硫代氨基甲酸Mn[N-哌啶tc]为(MnS_3)。相应的钝化膜表示为CM-1、CM-2和CM-3。钝化对结构的影响,光学,形态学,并研究了所制备器件的光化学性质。拉曼光谱表明,这种异质结构的组合是由粒径和表面效应的变化触发的,从而产生良好的电子导电性。窄带隙可归因于TiO2表面上的钝化材料之间的良好相互作用。CM-2细胞,稳定性研究表明,在这种稳定状态下,由于电子在电解质和界面上的迁移,电池是极化的,电流流动。具有最高电流密度的CM-3的循环伏安(CV)曲线促进了组装的太阳能电池的电催化活性。通过Bode图中的界面电子寿命和阻抗谱进一步证实了催化反应。电流-电压(J-V)分析表明,TiO2/CuS导带中的电子与半导体量子点(QD)和碘电解液HI-30电解质重新结合,导致5.20-6.85%的照片转换。
    Three different modified solar cells have been passivated with copper sulfide (CuS) on a TiO2 electrode and manganese sulfide (γ-MnS) hexagonal as photon absorbers. The MnS were prepared using (a-c) bis(N-Piperl-N-p-anisildithiocarbamato)Manganese(II) Complexes Mn[N-Piper-N-p-Anisdtc] as (MnS_1), N-p-anisidinyldithiocarbamato Mn[N-p-anisdtc] as (MnS_2) and N-piperidinyldithiocarbamato Mn[N-piperdtc] as (MnS_3). The corresponding passivated films were denoted as CM-1, CM-2, and CM-3. The influence of passivation on the structural, optical, morphological, and photochemical properties of the prepared devices has been investigated. Raman spectra show that the combination of this heterostructure is triggered by the variation in particle size and surface effect, thus resulting in good electronic conductivity. The narrow band gaps could be attributed to good interaction between the passivative materials on the TiO2 surface. CM-2 cells, stability studies show that the cell is polarized and current flows due to electron migration across the electrolyte and interfaces at this steady state. The cyclic voltammetry (CV) curve for the CM-3 with the highest current density promotes the electrocatalytic activity of the assembled solar cell. The catalytic reactions are further confirmed by the interfacial electron lifetimes in the Bode plots and the impedance spectra. The current-voltage (J-V) analysis suggests that the electrons in the conduction band of TiO2/CuS recombine with the semiconductor quantum dots (QDs) and the iodolyte HI-30 electrolyte, resulting in 5.20-6.85% photo-conversions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    界面工程的发展已证明在克服与超级电容器电极中的缓慢反应动力学相关的主要障碍方面具有显着的功效。在这次调查中,我们利用Ti3C2TxMXene纳米片作为载体,采用了一种简单的共沉淀方法来合成NiCoMoO4/MXene异质结构。这种异质结构抑制了MXene纳米片的重新堆叠,同时增强了NiCoMoO4纳米棒中电化学活性位点的暴露,从而减轻由体积波动引起的比电容的减小。NiCoMoO4/MXene电极,具有伪电容特性,表现出令人印象深刻的比电容水平,在各种充电速率下的卓越性能,以及在重复周期中的一致行为。通过优化质量比,该电极在1A/g的电流密度下实现1900F/g的比容量。即使在5A/g的显着更高的电流密度下持续10,000次循环后,它仍然保持着令人印象深刻的94.73%的保留率。我们的密度泛函理论(DFT)计算表明,增强的电化学性能可归因于NiCoMoO4/MXene异质结构内改善的电子耦合。在柔性准固态超级电容器(FSSC)中,NiCoMoO4/MXene阴极和活性炭(AC)阳极与含有铁氰化钾的碱性凝胶电解质的集成导致优异的电化学性能和灵活性。这些FSSC在850Wkg-1的功率密度下表现出72.89Whkg-1的最大能量密度,同时保持了16,780Wkg-1的令人印象深刻的功率输出,能量密度为37.28Whkg-1。基于这些出色的性能,很明显,NiCoMoO4/MXene异质结作为超级电容器的电极材料具有显著的优势,制造的FSSC设备为柔性电子设备铺平了一条新途径。
    The advancement of interface engineering has demonstrated remarkable efficacy in overcoming the primary impediment associated with sluggish reaction kinetics in supercapacitor electrodes. In this investigation, we employed a facile co-precipitation method to synthesize NiCoMoO4/MXene heterostructures utilizing Ti3C2Tx MXene nanosheets as carriers. This heterostructure inhibits the restacking of MXene nanosheets and simultaneously enhances the exposure of electrochemically active sites in NiCoMoO4 nanorods, thereby mitigating the reduction in specific capacitance resulting from volumetric fluctuations. The NiCoMoO4/MXene electrode, possessing pseudo-capacitance properties, demonstrates an impressive level of specific capacitance, exceptional performance across various charging rates, and consistent behavior throughout repeated cycles. By optimizing the mass ratio, this electrode achieves a specific capacity of 1900 F/g under a current density of 1 A/g. Even after enduring 10,000 cycles at a significantly higher current density of 5 A/g, it still maintains an impressive retention rate of 94.73 %. Our density functional theory (DFT) calculations indicate that the enhanced electrochemical performance can be attributed to the improved electronic coupling within the NiCoMoO4/MXene heterostructure. The integration of NiCoMoO4/MXene cathode and activated carbon (AC) anode with an alkaline gel electrolyte containing potassium ferricyanide in flexible quasi-solid-state supercapacitors (FSSCs) results in exceptional electrochemical performance and flexibility. These FSSCs demonstrate a maximum energy density of 72.89 Wh kg-1 at a power density of 850 W kg-1, while maintaining an impressive power output of 16,780 W kg-1 with an energy density of 37.28 Wh kg-1. Based on these outstanding properties, it is evident that the NiCoMoO4/MXene heterojunction possesses significant advantages as electrode material for supercapacitors, and the fabricated FSSCs devices pave a new pathway for flexible electronic devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于多电子转移的转化-合金化反应的铋基化合物作为可充电镁电池(rMB)的替代阳极候选物已引起广泛关注。然而,由缓慢的动力学引起的镁储存能力不足,可逆性差,糟糕的结构稳定性阻碍了它们的实际利用。在这里,通过简单的自组装策略制备了锚定在MXene上的单分散Bi2S3,以诱导Ti-S和Ti-O-Bi的界面键合。独特的优势,包括良好的导电性,机械强度高,和快速的电荷转移,巧妙地集成在Bi2S3/MXene异质结构中,这赋予了异质结构增强的镁储存性能。密度泛函理论计算与动力学行为分析相结合,证实了杂化物中有利的电荷转移和低离子扩散势垒。此外,通过异位研究,深入揭示了逐步插入-转化-合金化反应机理,这也可能是提高业绩的原因。这项工作为通过针对高性能储能设备的强界面耦合工程构建巧妙的多成分混合动力提供了重要的启示。
    Bismuth-based compounds based on conversion-alloying reactions of multielectron transfer have attracted extensive attention as alternative anode candidates for rechargeable magnesium batteries (rMBs). However, the inadequate magnesium storage capability induced by the sluggish kinetics, poor reversibility, and terrible structural stability impedes their practical utilization. Herein, monodispersed Bi2S3 anchored on MXene has been prepared via a simple self-assembly strategy to induce the interfacial bonding of Ti-S and Ti-O-Bi. Unique superiority, including good electrical conductivity, high mechanical strength, and rapid charge transfer, is cleverly integrated together in the Bi2S3/MXene heterostructures, which endowed heterostructures with enhanced magnesium storage performance. Density functional theory calculations combined with kinetic behavior analyses confirm the favorable charge transfer and low ion diffusion barrier in hybrids. Furthermore, a stepwise insertion-conversion-alloying reaction mechanism is revealed in depth by ex situ investigations, which may also account for promoting performance. This work provides significant inspirations for constructing ingenious multicompositional hybrids by strong interfacial coupling engineering toward high-performance energy storage devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    探索有效的电催化剂以在宽温度范围内加速氧反应是开发用于全气候应用的锌空气电池(ZAB)的关键问题。在这里,Co-CoSe异质毛茸茸纤维(Co-CoSe@NHF)被开发为ZAB的双功能氧电催化剂,用于宽温度范围的应用。具有大功函数差(ΔWF)的Co-CoSe异质结构赋予界面电子重新分布,这建立了强大的界面内置电场(BIEF),并改善了氧反应。同时,Co-CoSe异质结构被原位生长的碳纳米管封装,并形成具有毛茸茸表面和串珠结构的中空纤维(NHF)。高度多孔且导电的NHF配置促进快速动力学且有利于适应循环期间的体积变化。因此,Co-CoSe@NHF具有优异的双功能性能和良好的氧反应可靠性。与Co-CoSe@NHF光纤集成,ZAB电池具有卓越的功率密度(301mWcm-2)和在25°C下280小时的长期循环稳定性,并且即使温度降低到-25°C,也保持126mWcm-2的功率密度。此外,固态ZAB在很宽的温度范围内具有显著的柔韧性和优异的性能。因此,这项工作不仅提出了一种设计高性能双功能电催化剂的新策略,但也推动了全气候应用的灵活电源的发展。
    The explorations of efficient electrocatalysts to accelerate oxygen reactions in a wide temperature range is a crucial issue to the development of zinc-air batteries (ZAB) for all-climate applications. Herein, the Co-CoSe heterogeneous furry fibers (Co-CoSe@NHF) are developed as a bifunctional oxygen electrocatalyst for ZAB towards wide-temperature range applications. The Co-CoSe heterostructure with large work function difference (ΔWF) endows interfacial electron redistribution, which builds strong interfacial built-in electric field (BIEF) and improves the oxygen reactions. Meanwhile, the Co-CoSe heterostructure is encapsulated by in-situ grown carbon nanotubes, and forms the hollow fiber (NHF) with furry surface and beads-on-string configuration. The highly porous and conductive NHF configuration facilitates the fast kinetics and favors to accommodates volume change during cycling. As a result, the Co-CoSe@NHF achieves the superior bifunctional properties and good reliability for oxygen reactions. Integrated with the Co-CoSe@NHF fiber, the ZAB cell delivers the superior power density (301 mW cm-2) and long-term cycling stability over 280 h at 25 °C, and maintains the power densities of 126 mW cm-2 even the temperature decreases to -25 °C. Moreover, the solid-state ZAB exhibits significant flexibility and superior properties in a wide temperature range. Therefore, this work not only proposes a new strategy to design the high-performance bifunctional electrocatalysts, but also propels the development of flexible power sources for all-climate applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    设计便宜,用于尿素氧化反应(UOR)和析氢反应(HER)的高效耐用双功能催化剂是一种令人鼓舞的策略,可以减少能量消耗来生产氢气。在这里,泡沫镍(表示为Co(OH)2/AlOOH/NF-100)上富含氧空位的氢氧化钴/羟基氧化铝异质结构是使用一步水热法制备的。理论计算和实验结果表明,电子从Co(OH)2转移到高活性AlOOH导致界面电荷重新分布和电子结构的优化。异质结构中丰富的氧空位可以提高电导率,同时可以作为催化反应的活性位点。因此,由于异质界面和氧空位之间的协同作用,最佳的Co(OH)2/AlOOH/NF-100对HER(62.9mV@10mAcm-2)和UOR(1.36V@10mAcm-2)具有出色的电催化性能。此外,UOR的原位电化学阻抗谱(EIS)表明,异质结构催化剂表现出快速反应动力学,传质和电流响应。重要的是,由Co(OH)2/AlOOH/NF-100组成的尿素辅助电解在含有0.5M尿素的1MKOH中显示出低电池电压(1.48V@10mAcm-2)。这项工作为HER/UOR双功能电催化剂的开发提供了有希望的途径。
    Designing inexpensive, high-efficiency and durable bifunctional catalysts for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) is an encouraging tactic to produce hydrogen with reduced energy expenditure. Herein, oxygen vacancy-rich cobalt hydroxide/aluminum oxyhydroxide heterostructure on nickel foam (denoted as Co(OH)2/AlOOH/NF-100) has been fabricated using one step hydrothermal process. Theoretical calculation and experimental results indicate the electrons transfer from Co(OH)2 to highly active AlOOH results in the interfacial charge redistribution and optimization of electronic structure. Abundant oxygen vacancies in the heterostructure could improve the conductivity and simultaneously serve as the active sites for catalytic reaction. Consequently, the optimal Co(OH)2/AlOOH/NF-100 demonstrates excellent electrocatalytic performance for HER (62.9 mV@10 mA cm-2) and UOR (1.36 V@10 mA cm-2) due to the synergy between heterointerface and oxygen vacancies. Additionally, the in situ electrochemical impedance spectrum (EIS) for UOR suggests that the heterostructured catalyst exhibits rapid reaction kinetics, mass transfer and current response. Importantly, the urea-assisted electrolysis composed of the Co(OH)2/AlOOH/NF-100 manifests a low cell voltage (1.48 V @ 10 mA cm-2) in 1 M KOH containing 0.5 M urea. This work presents a promising avenue to the development of HER/UOR bifunctional electrocatalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    光合微生物,依靠光驱动的电子转移,将太阳能储存在自我能源载体中,并将其转化为生物能源。尽管这些微生物可以以近100%的量子效率进行光诱导电荷分离,它们的实际应用受到光合能量转换效率的固有限制。人造半导体可以诱导对光激发的电子反应,为自然光合作用提供额外的激发电子,以提高太阳能转换效率。然而,在跨细胞膜导入外源电子方面仍然存在挑战。在这项工作中,我们开发了一种工程化的金纳米簇/有机半导体异质结构(AuNC@OFTF)来耦合活蓝藻的细胞内电子传输链。AuNC@OFTF表现出延长的激发态寿命和有效的电荷分离。内化的AuNC@OFTF允许其光生电子参与光系统II的下游,并构建定向的电子高速公路,这使得活蓝细菌中的光电流增加了五倍。此外,AuNC@OFTF的结合事件在类囊体膜上建立了非生物-生物电子界面,以增强电子通量,并最终提供了烟酰胺腺嘌呤二核苷酸磷酸。因此,AuNC@OFTF可用于时空操纵和增强细胞中活蓝细菌的太阳能转化,为重新设计光合途径提供扩展的纳米技术。
    Photosynthetic microorganisms, which rely on light-driven electron transfer, store solar energy in self-energy carriers and convert it into bioenergy. Although these microorganisms can operate light-induced charge separation with nearly 100% quantum efficiency, their practical applications are inherently limited by the photosynthetic energy conversion efficiency. Artificial semiconductors can induce an electronic response to photoexcitation, providing additional excited electrons for natural photosynthesis to improve solar conversion efficiency. However, challenges remain in importing exogenous electrons across cell membranes. In this work, we have developed an engineered gold nanocluster/organic semiconductor heterostructure (AuNC@OFTF) to couple the intracellular electron transport chain of living cyanobacteria. AuNC@OFTF exhibits a prolonged excited state lifetime and effective charge separation. The internalized AuNC@OFTF permits its photogenerated electrons to participate in the downstream of photosystem II and construct an oriented electronic highway, which enables a five-fold increase in photocurrent in living cyanobacteria. Moreover, the binding events of AuNC@OFTF established an abiotic-biotic electronic interface at the thylakoid membrane to enhance electron flux and finally furnished nicotinamide adenine dinucleotide phosphate. Thus, AuNC@OFTF can be exploited to spatiotemporally manipulate and enhance the solar conversion of living cyanobacteria in cells, providing an extended nanotechnology for re-engineering photosynthetic pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    设计具有受控纳米结构的高熵氧氢氧化物(HEO)电催化剂对于有效和稳定的水分解电催化剂至关重要。在这里,创建了一种新型HEOs材料(FeCoNiWCuOOH@Cu),该材料包含通过在3D双连续多孔Cu载体上电沉积而衍生的五种非贵金属元素。这种支持,通过液态金属去合金化方法制备,提供了一个高比表面积和快速的质量/电荷转移通道。所得的高熵FeCoNiWCuOOH纳米片提供了活性位点的密集分布。Cu骨架和FeCoNiWCuOOH纳米片之间的异质结构增强了传质,电子结构耦合,和整体结构稳定性,在析氧反应(OER)中产生优异的活性,析氢反应(HER),和水分解反应。在10mAcm-2时,OER的过电位,她,在1.0mKOH溶液中分解的水分别为200、18和1.40V,分别,表现优于大多数当前的电催化剂。即使在300mAcm-2下运行100、100和超过1000小时后,催化性能仍保持稳定,相应地。这种材料在集成氢能系统中具有潜在的应用。更重要的是,密度泛函理论(DFT)计算证明了五种元素在增强水分解活性方面的协同作用。这项工作为设计工业水电解系统提供了宝贵的见解。
    Designing high-entropy oxyhydroxides (HEOs) electrocatalysts with controlled nanostructures is vital for efficient and stable water-splitting electrocatalysts. Herein, a novel HEOs material (FeCoNiWCuOOH@Cu) containing five non-noble metal elements derived by electrodeposition on a 3D double-continuous porous Cu support is created. This support, prepared via the liquid metal dealloying method, offers a high specific surface area and rapid mass/charge transfer channels. The resulting high-entropy FeCoNiWCuOOH nanosheets provide a dense distribution of active sites. The heterostructure between Cu skeletons and FeCoNiWCuOOH nanosheets enhances mass transfer, electronic structure coupling, and overall structural stability, leading to excellent activities in the oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and water splitting reaction. At 10 mA cm-2, the overpotentials for OER, HER, and water splitting in 1.0 m KOH solution are 200, 18, and 1.40 V, respectively, outperforming most current electrocatalysts. The catalytic performance remains stable even after operating at 300 mA cm-2 for 100, 100, and over 1000 h, correspondingly. This material has potential applications in integrated hydrogen energy systems. More importantly, density functional theory (DFT) calculations demonstrate the synergy of the five elements in enhancing water-splitting activity. This work offers valuable insights for designing industrial water electrolysis systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    异质结构工程对于提高气体传感性能至关重要。然而,通过合理的异质结构设计实现室温NO2传感的快速响应仍然是一个挑战。在这项研究中,通过水热法合成了Bi2Se3/SnSe22D/2D异质结构,用于室温下NO2的快速检测。通过将Bi2Se3纳米片与SnSe2纳米片相结合,Bi2Se3/SnSe2传感器证明,在室温下对10ppmNO2的响应时间短(15s),对NO2的最低检测限,达到25ppb。此外,传感器对NO2的响应明显大于对其他干扰气体的响应,包括10ppmNO2、H2S、NH3,CH4,CO,和SO2,证明了其出色的选择性。并讨论了相关性能增强的机理。
    Heterostructure engineering is crucial for enhancing gas sensing performance. However, achieving rapid response for room-temperature NO2 sensing through rational heterostructure design remains a challenge. In this study, a Bi2Se3/SnSe2 2D/2D heterostructure was synthesized by hydrothermal method for the rapid detection of NO2 at room temperature. By combining Bi2Se3 nanosheets with SnSe2 nanosheets, the Bi2Se3/SnSe2 sensor demonstrated and the lowest detection limit for NO2 a short response time (15 s) to 10 ppm NO2 at room temperature, reaches 25 ppb. Furthermore the sensor demonstrates significantly larger response to NO2 than to other interfering gases, including 10 ppm NO2, H2S, NH3, CH4, CO, and SO2,demonstrating its outstanding selectivity. And we discuss the mechanism of related performance enhancement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    异质结构和异质元素的引入已被认为是提高电化学性能的有效策略。在这里,通过简单的水热硫化方法引入硫物种,构建了开放异质结构Fe7S8/Mn(OH)2作为双功能材料。开放的虫草状形态可以使材料与电解质接触更充分,暴露了大量的反应位点。此外,异构元素S的引入成功地构建了异构接口,界面调制复合材料由Mn原子组成,根据密度泛函理论(DFT)计算,在费米能级附近贡献主要态密度(DOS)。优化了含氧中间体在析氧反应(OER)过程中的吸附能,降低了反应能垒,有利于提高材料的电化学性能。正如预测的那样,Fe7S8/Mn(OH)2材料具有显著的电化学性能,例如,对于析氧反应,在10mAcm-2时的过电位为202mV,甚至在1Ag-1时的比电容为2198Fg-1。这项工作为引入硫物种和控制材料结构的作用提供了新的见解,并为开发用于能量存储和转换的双功能材料提供了新的设计思路。
    Heterostructures and the introduction of heterogeneous elements have been regarded as effective strategies to promote electrochemical performance. Herein, sulfur species are introduced by a simple hydrothermal vulcanization method, which constructs the open heterostructure Fe7S8/Mn(OH)2 as a bifunctional material. The open cordyceps-like morphology can make the material contact more sufficiently with the electrolyte, exposing a large number of reaction sites. Furthermore, the introduction of the heterogeneous element S successfully constructs a heterogeneous interface, the interface-modulated composite material consists of Mn atoms contributing the main density of states (DOS) near the Fermi energy level from the density functional theory (DFT) calculations, which optimizes the adsorption energy of oxygen-containing intermediates during the oxygen evolution reaction (OER) process and reduces the reaction energy barrier, being conducive to the improvement of the material\'s electrochemical properties. As predicted, the Fe7S8/Mn(OH)2 material exhibits remarkable electrochemical properties, such as an overpotential of 202 mV at 10 mA cm-2 for the oxygen evolution reaction and even a specific capacitance of 2198 F g-1 at 1 A g-1. This work provides new insights into the role of introducing sulfur species and controlling the structure of the material, and exemplifies novel design ideas for developing bifunctional materials for energy storage and conversion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    异质结构由于协同效应和界面相互作用而赋予电化学杂化物有前途的储能性能。然而,开发一种简单但有效的方法来最大化界面效应是至关重要的,但具有挑战性。在这里,双金属硫化物/碳异质结构通过高通量模板辅助策略在受限的碳网络中实现,以诱导高活性和稳定的电极结构。设计的异质结构不仅产生丰富的互连Co9S8/MoS2/N掺杂碳(Co9S8/MoS2/NC)异质结,具有连续的离子/电子转移通道,而且保持了出色的转换可逆性。用作钠储存的阳极,Co9S8/MoS2/NC框架显示出优异的钠储存性质(在0.2A/g下100次循环后480mAh/g和在2A/g下500次循环后286.2mAh/g的可逆容量)。鉴于此,这项研究可以通过形成转化反应动力学的动态通道来指导接口工程的未来设计协议,以用于高性能电极的潜在应用。
    Heterostructures endow electrochemical hybrids with promising energy storage properties owing to synergistic effects and interfacial interaction. However, developing a facile but effective approach to maximize interface effects is crucial but challenging. Herein, a bimetallic sulfide/carbon heterostructure is realized in a confined carbon network via a high-throughput template-assisted strategy to induce highly active and stable electrode architecture. The designed heterostructures not only yield abundant interconnected Co9S8/MoS2/N-doped carbon (Co9S8/MoS2/NC) heterojunctions with continuous channels for ion/electron transfer but maintain excellent conversion reversibility. Serving as anode for sodium storage, the Co9S8/MoS2/NC framework displayed excellent sodium storage properties (reversible capacity of 480 mAh/g after 100 cycles at 0.2 A/g and 286.2 mAh/g after 500 cycles at 2 A/g). Given this, this study can guide future design protocols for interface engineering by forming dynamic channels of conversion reaction kinetics for potential applications in high-performance electrodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号