关键词: Collagen Electroactive materials PVDF Surface charge Surface coating

Mesh : Polyvinyls / chemistry Mesenchymal Stem Cells / cytology metabolism drug effects Surface Properties Animals Collagen Type I / metabolism chemistry Biocompatible Materials / chemistry pharmacology Cell Adhesion / drug effects Static Electricity Fluorocarbon Polymers

来  源:   DOI:10.1016/j.actbio.2024.06.039

Abstract:
The precise mechanisms underlying the cellular response to static electric cues remain unclear, limiting the design and development of biomaterials that utilize this parameter to enhance specific biological behaviours. To gather information on this matter we have explored the interaction of collagen type-I, the most abundant mammalian extracellular protein, with poly(vinylidene fluoride) (PVDF), an electroactive polymer with great potential for tissue engineering applications. Our results reveal significant differences in collagen affinity, conformation, and interaction strength depending on the electric charge of the PVDF surface, which subsequently affects the behaviour of mesenchymal stem cells seeded on them. These findings highlight the importance of surface charge in the establishment of the material-protein interface and ultimately in the biological response to the material. STATEMENT OF SIGNIFICANCE: The development of new tissue engineering strategies relies heavily on the understanding of how biomaterials interact with biological tissues. Although several factors drive this process and their driving principles have been identified, the relevance and mechanism by which the surface potential influences cell behaviour is still unknown. In our study, we investigate the interaction between collagen, the most abundant component of the extracellular matrix, and poly(vinylidene fluoride) with varying surface charges. Our findings reveal substantial variations in the binding forces, structure and adhesion of collagen on the different surfaces, which collectively explain the differential cellular responses. By exposing these differences, our research fills a critical knowledge gap and paves the way for innovations in material design for advanced tissue regeneration strategies.
摘要:
细胞对静电信号反应的确切机制尚不清楚,限制利用该参数增强特定生物学行为的生物材料的设计和开发。为了收集有关此问题的信息,我们探索了I型胶原蛋白的相互作用,最丰富的哺乳动物细胞外蛋白,聚偏氟乙烯(PVDF),一种具有巨大组织工程应用潜力的电活性聚合物。我们的结果揭示了胶原蛋白亲和力的显着差异,构象,和相互作用强度取决于PVDF表面的电荷,这随后会影响接种在其上的间充质干细胞的行为。这些发现强调了表面电荷在材料-蛋白质界面的建立以及最终对材料的生物响应中的重要性。重要声明:新的组织工程策略的开发在很大程度上依赖于对生物材料如何与生物组织相互作用的理解。尽管有几个因素推动了这一过程,并且已经确定了它们的驱动原理,表面电势影响细胞行为的相关性和机制仍然未知。在我们的研究中,我们研究了胶原蛋白之间的相互作用,细胞外基质中最丰富的成分,和具有不同表面电荷的聚(偏二氟乙烯)。我们的发现揭示了约束力的实质性变化,胶原蛋白在不同表面上的结构和粘附,它们共同解释了细胞反应的差异。通过揭露这些差异,我们的研究填补了一个关键的知识空白,并为先进的组织再生策略的材料设计创新铺平了道路。
公众号