关键词: Bacterial cellulose Functional modification Paper reinforcement

Mesh : Cellulose / chemistry Paper Silanes / chemistry Propylamines / chemistry Hydrogen-Ion Concentration X-Ray Diffraction Temperature Spectroscopy, Fourier Transform Infrared

来  源:   DOI:10.1016/j.ijbiomac.2024.133130

Abstract:
The aging of paper seriously threatens the service life of cultural heritage documents. Bacterial cellulose (BC), which has a good fiber aspect ratio and is rich in hydroxyl groups, is suitable for strengthening aged paper. However, a single BC added was not ideal for paper restoration, since only strengthening was not able to resist the persistent acidification of ancient book. In this work, BC was functionalized by 3-aminopropyltriethoxysilane (APTES) to develop the interface bonding with aged paper. Fourier transform infrared (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and elemental analysis identified the successful amino-silanization of BC. The modification parameters were optimized as the concentration of APTES of 5 wt%, the reaction time of 4 h, and the reaction temperature of 80 °C based on a considerable improvement in the strength properties without obvious appearance impact on reinforced papers. Moreover, the pH value of the repaired paper was achieved at 8.03, ensuring the stability of the anti-aging effect. The results confirmed that APTES-BC had great potential applications in ancient books conservation.
摘要:
纸张的老化严重威胁着文化遗产文献的使用寿命。细菌纤维素(BC),具有良好的纤维长径比,富含羟基,适用于强化老化纸张。然而,添加单个BC并不理想用于纸张修复,因为只有强化是无法抵御古籍持续酸化的。在这项工作中,BC通过3-氨基丙基三乙氧基硅烷(APTES)官能化,以发展与老化纸的界面键合。傅里叶变换红外(FTIR),X射线衍射(XRD)核磁共振(NMR)和元素分析确定了BC的成功氨基硅烷化。改性参数优化为APTES的浓度为5wt%,反应时间4小时,和80°C的反应温度基于强度性能的显着改善,而对增强纸没有明显的外观影响。此外,修复纸的pH值达到8.03,保证了抗老化效果的稳定性。结果证实,APTES-BC在古籍保护中具有巨大的应用潜力。
公众号