关键词: antimicrobial agents bacterial adhesion biofilm formation calcium phosphates essential oils eukaryotic cell proliferation and integration metal ions polycaprolactone scaffolds

来  源:   DOI:10.3390/polym16121668   PDF(Pubmed)

Abstract:
With respect to other fields, bone tissue engineering has significantly expanded in recent years, leading not only to relevant advances in biomedical applications but also to innovative perspectives. Polycaprolactone (PCL), produced in the beginning of the 1930s, is a biocompatible and biodegradable polymer. Due to its mechanical and physicochemical features, as well as being easily shapeable, PCL-based constructs can be produced with different shapes and degradation kinetics. Moreover, due to various development processes, PCL can be made as 3D scaffolds or fibres for bone tissue regeneration applications. This outstanding biopolymer is versatile because it can be modified by adding agents with antimicrobial properties, not only antibiotics/antifungals, but also metal ions or natural compounds. In addition, to ameliorate its osteoproliferative features, it can be blended with calcium phosphates. This review is an overview of the current state of our recent investigation into PCL modifications designed to impair microbial adhesive capability and, in parallel, to allow eukaryotic cell viability and integration, in comparison with previous reviews and excellent research papers. Our recent results demonstrated that the developed 3D constructs had a high interconnected porosity, and the addition of biphasic calcium phosphate improved human cell attachment and proliferation. The incorporation of alternative antimicrobials-for instance, silver and essential oils-at tuneable concentrations counteracted microbial growth and biofilm formation, without affecting eukaryotic cells\' viability. Notably, this challenging research area needs the multidisciplinary work of material scientists, biologists, and orthopaedic surgeons to determine the most suitable modifications on biomaterials to design favourable 3D scaffolds based on PCL for the targeted healing of damaged bone tissue.
摘要:
关于其他领域,骨组织工程近年来有了显著的发展,不仅导致生物医学应用的相关进展,而且导致创新的观点。聚己内酯(PCL),生产于1930年代初,是一种生物相容性和生物可降解的聚合物。由于其机械和物理化学特征,以及容易变形,可以产生具有不同形状和降解动力学的基于PCL的构建体。此外,由于各种开发过程,PCL可以制成用于骨组织再生应用的3D支架或纤维。这种杰出的生物聚合物是通用的,因为它可以通过添加具有抗菌性能的试剂进行修饰,不仅仅是抗生素/抗真菌药,还有金属离子或天然化合物。此外,来改善它的骨增生特征,它可以与磷酸钙混合。这篇综述概述了我们最近对旨在损害微生物粘附能力的PCL修饰的研究现状,并行,允许真核细胞存活和整合,与以前的评论和优秀的研究论文相比。我们最近的结果表明,开发的3D结构具有高的互连孔隙率,双相磷酸钙的加入改善了人细胞的附着和增殖。加入替代抗菌剂-例如,银和精油-在可调浓度下抵消微生物生长和生物膜形成,而不影响真核细胞的生存能力。值得注意的是,这个具有挑战性的研究领域需要材料科学家的多学科工作,生物学家,和整形外科医生,以确定对生物材料的最合适的修改,以设计基于PCL的有利的3D支架,用于受损骨组织的靶向愈合。
公众号