关键词: Immobilization Magnetic biochar Microplastics degradation PET hydrolase Soil function

Mesh : Hydrolases / metabolism Polyethylene Terephthalates / chemistry metabolism Soil Microbiology Soil Pollutants / metabolism Charcoal / chemistry Phosphorus / metabolism chemistry Microplastics / toxicity Biodegradation, Environmental Enzymes, Immobilized / metabolism chemistry Nitrogen / metabolism Nitrogen Cycle Microbiota / drug effects Bacteria / genetics metabolism drug effects

来  源:   DOI:10.1016/j.jhazmat.2024.134838

Abstract:
Microplastics (MPs) pose an emerging threat to soil ecological function, yet effective solutions remain limited. This study introduces a novel approach using magnetic biochar immobilized PET hydrolase (MB-LCC-FDS) to degrade soil polyethylene terephthalate microplastics (PET-MPs). MB-LCC-FDS exhibited a 1.68-fold increase in relative activity in aquatic solutions and maintained 58.5 % residual activity after five consecutive cycles. Soil microcosm experiment amended with MB-LCC-FDS observed a 29.6 % weight loss of PET-MPs, converting PET into mono(2-hydroxyethyl) terephthalate (MHET). The generated MHET can subsequently be metabolized by soil microbiota to release terephthalic acid. The introduction of MB-LCC-FDS shifted the functional composition of soil microbiota, increasing the relative abundances of Microbacteriaceae and Skermanella while reducing Arthobacter and Vicinamibacteraceae. Metagenomic analysis revealed that MB-LCC-FDS enhanced nitrogen fixation, P-uptake and transport, and organic-P mineralization in PET-MPs contaminated soil, while weakening the denitrification and nitrification. Structural equation model indicated that changes in soil total carbon and Simpson index, induced by MB-LCC-FDS, were the driving factors for soil carbon and nitrogen transformation. Overall, this study highlights the synergistic role of magnetic biochar-immobilized PET hydrolase and soil microbiota in degrading soil PET-MPs, and enhances our understanding of the microbiome and functional gene responses to PET-MPs and MB-LCC-FDS in soil systems.
摘要:
微塑料(MPs)对土壤生态功能构成了新的威胁,然而,有效的解决方案仍然有限。本研究介绍了一种使用磁性生物炭固定化PET水解酶(MB-LCC-FDS)降解土壤聚对苯二甲酸乙二醇酯微塑料(PET-MPs)的新方法。MB-LCC-FDS在水溶液中的相对活性增加了1.68倍,并在连续五个循环后保持了58.5%的残留活性。用MB-LCC-FDS修正的土壤微观实验观察到PET-MPs的重量损失为29.6%,将PET转化为单(2-羟乙基)对苯二甲酸酯(MHET)。产生的MHET随后可以被土壤微生物群代谢以释放对苯二甲酸。MB-LCC-FDS的引入改变了土壤微生物群的功能组成,增加微细菌科和斯克曼氏菌的相对丰度,同时减少Arthobacter和Vicinamibacteraceae。宏基因组分析显示MB-LCC-FDS增强了固氮,P吸收和转运,PET-MPs污染土壤中的有机磷矿化,同时削弱反硝化和硝化。结构方程模型表明,土壤全碳和辛普森指数的变化,由MB-LCC-FDS诱导,是土壤碳氮转化的驱动因素。总的来说,这项研究强调了磁性生物炭固定化PET水解酶和土壤微生物在降解土壤PET-MPs中的协同作用,并增强我们对土壤系统中微生物组和功能基因对PET-MPs和MB-LCC-FDS的反应的理解。
公众号