关键词: PAH-contaminated soil endophytic bacteria graphene oxide microbial community analysis phytoremediation

Mesh : Graphite / chemistry Polycyclic Aromatic Hydrocarbons / metabolism Soil Pollutants / metabolism Biodegradation, Environmental Soil Microbiology Bacteria / drug effects metabolism Endophytes / metabolism Plant Roots / microbiology Sphingomonas / metabolism Plants / microbiology metabolism Mycobacterium / drug effects metabolism Flavobacterium / drug effects metabolism Streptomyces / metabolism Microbacterium / metabolism

来  源:   DOI:10.3390/molecules29102342   PDF(Pubmed)

Abstract:
Environmental pollution stands as one of the significant global challenges we face today. Polycyclic aromatic hydrocarbons (PAHs), a class of stubborn organic pollutants, have long been a focal point of bioremediation research. This study aims to explore the impact and mechanisms of graphene oxide (GO) on the phytoremediation effectiveness of PAHs. The results underscore the significant efficacy of GO in accelerating the degradation of PAHs. Additionally, the introduction of GO altered the diversity and community structure of endophytic bacteria within the roots, particularly those genera with potential for PAH degradation. Through LEfSe analysis and correlation studies, we identified specific symbiotic bacteria, such as Mycobacterium, Microbacterium, Flavobacterium, Sphingomonas, Devosia, Bacillus, and Streptomyces, which coexist and interact under the influence of GO, synergistically degrading PAHs. These bacteria may serve as key biological markers in the PAH degradation process. These findings provide new theoretical and practical foundations for the application of nanomaterials in plant-based remediation of polluted soils and showcase the immense potential of plant-microbe interactions in environmental restoration.
摘要:
环境污染是我们今天面临的重大全球挑战之一。多环芳烃(PAHs),一类顽固的有机污染物,长期以来一直是生物修复研究的重点。本研究旨在探讨氧化石墨烯(GO)对PAHs植物修复效果的影响及作用机制。结果强调了GO在加速PAHs降解方面的显著功效。此外,GO的引入改变了根内内生细菌的多样性和群落结构,特别是那些具有PAH降解潜力的属。通过LEfSe分析和相关性研究,我们确定了特定的共生细菌,如分枝杆菌,微细菌,黄杆菌,鞘氨醇单胞菌,Devosia,芽孢杆菌,和链霉菌,在GO的影响下共存和相互作用,协同降解PAHs。这些细菌可以作为PAH降解过程中的关键生物标记。这些发现为纳米材料在污染土壤的植物修复中的应用提供了新的理论和实践基础,并展示了植物-微生物相互作用在环境恢复中的巨大潜力。
公众号