关键词: Cellulose Interface interactions Molecular dynamics simulations Spider silk protein

Mesh : Molecular Dynamics Simulation Cellulose / chemistry Spiders / chemistry Animals Hydrogen Bonding Silk / chemistry Adsorption Protein Binding Fibroins / chemistry

来  源:   DOI:10.1007/s00894-024-05945-w

Abstract:
BACKGROUND: Due to their excellent biocompatibility and degradability, cellulose/spider silk protein composites hold a significant value in biomedical applications such as tissue engineering, drug delivery, and medical dressings. The interfacial interactions between cellulose and spider silk protein affect the properties of the composite. Therefore, it is important to understand the interfacial interactions between spider silk protein and cellulose to guide the design and optimization of composites. The study of the adsorption of protein on specific surfaces of cellulose crystal can be very complex using experimental methods. Molecular dynamics simulations allow the exploration of various physical and chemical changes at the atomic level of the material and enable an atomic description of the interactions between cellulose crystal planes and spider silk protein. In this study, molecular dynamics simulations were employed to investigate the interfacial interactions between spider silk protein (NTD) and cellulose surfaces. Findings of RMSD, RMSF, and secondary structure showed that the structure of NTD proteins remained unchanged during the adsorption process. Cellulose contact numbers and hydrogen bonding trends on different crystalline surfaces suggest that van der Waals forces and hydrogen bonding interactions drive the binding of proteins to cellulose. These findings reveal the interaction between cellulose and protein at the molecular level and provide theoretical guidance for the design and synthesis of cellulose/spider silk protein composites.
METHODS: MD simulations were all performed using the GROMACS-5.1 software package and run with CHARMM36 carbohydrate force field. Molecular dynamics simulations were performed for 500 ns for the simulated system.
摘要:
背景:由于它们具有出色的生物相容性和降解性,纤维素/蜘蛛丝蛋白复合材料在生物医学应用如组织工程中具有重要价值,药物输送,和医用敷料。纤维素和蜘蛛丝蛋白之间的界面相互作用影响复合材料的性能。因此,了解蜘蛛丝蛋白与纤维素之间的界面相互作用对指导复合材料的设计和优化具有重要意义。使用实验方法研究蛋白质在纤维素晶体特定表面上的吸附可能非常复杂。分子动力学模拟允许探索材料原子水平的各种物理和化学变化,并能够原子描述纤维素晶体平面和蜘蛛丝蛋白之间的相互作用。在这项研究中,采用分子动力学模拟研究蜘蛛丝蛋白(NTD)与纤维素表面的界面相互作用。RMSD的发现,RMSF,和二级结构表明NTD蛋白的结构在吸附过程中保持不变。不同结晶表面上的纤维素接触数和氢键键合趋势表明,范德华力和氢键键合相互作用驱动蛋白质与纤维素的结合。这些发现在分子水平上揭示了纤维素与蛋白质的相互作用,为纤维素/蜘蛛丝蛋白复合材料的设计和合成提供了理论指导。
方法:MD模拟均使用GROMACS-5.1软件包进行,并使用CHARMM36碳水化合物力场运行。对模拟系统进行了500ns的分子动力学模拟。
公众号