关键词: CRISPR RNAi giant fiber marbled crayfish marmorkrebs stomatogastric ganglion tail flip transgenesis CRISPR RNAi giant fiber marbled crayfish marmorkrebs stomatogastric ganglion tail flip transgenesis

来  源:   DOI:10.3389/fphys.2022.947598   PDF(Pubmed)

Abstract:
For over a century the nervous system of decapod crustaceans has been a workhorse for the neurobiology community. Many fundamental discoveries including the identification of electrical and inhibitory synapses, lateral and pre-synaptic inhibition, and the Na+/K+-pump were made using lobsters, crabs, or crayfish. Key among many advantages of crustaceans for neurobiological research is the unique access to large, accessible, and identifiable neurons, and the many distinct and complex behaviors that can be observed in lab settings. Despite these advantages, recent decades have seen work on crustaceans hindered by the lack of molecular and genetic tools required for unveiling the cellular processes contributing to neurophysiology and behavior. In this perspective paper, we argue that the recently sequenced marbled crayfish, Procambarus virginalis, is suited to become a genetic model system for crustacean neuroscience. P. virginalis are parthenogenetic and produce genetically identical offspring, suggesting that germline transformation creates transgenic animal strains that are easy to maintain across generations. Like other decapod crustaceans, marbled crayfish possess large neurons in well-studied circuits such as the giant tail flip neurons and central pattern generating neurons in the stomatogastric ganglion. We provide initial data demonstrating that marbled crayfish neurons are accessible through standard physiological and molecular techniques, including single-cell electrophysiology, gene expression measurements, and RNA-interference. We discuss progress in CRISPR-mediated manipulations of the germline to knock-out target genes using the \'Receptor-mediated ovary transduction of cargo\' (ReMOT) method. Finally, we consider the impact these approaches will have for neurophysiology research in decapod crustaceans and more broadly across invertebrates.
摘要:
一个多世纪以来,十足甲壳类动物的神经系统一直是神经生物学界的主力。许多基本发现,包括电突触和抑制性突触的识别,外侧和突触前抑制,Na+/K+泵是用龙虾制成的,螃蟹,或者小龙虾.甲壳类动物在神经生物学研究中的许多优势中的关键是独特的获取大型,可访问,和可识别的神经元,以及在实验室环境中可以观察到的许多不同和复杂的行为。尽管有这些优势,近几十年来,甲壳类动物的工作因缺乏揭示有助于神经生理学和行为的细胞过程所需的分子和遗传工具而受到阻碍。在这篇透视论文中,我们认为最近测序的大理石小龙虾,处女原龙脑,适合成为甲壳动物神经科学的遗传模型系统。virginalis是孤雌生殖的,产生遗传相同的后代,表明种系转化产生了易于跨代维持的转基因动物菌株。像其他十足甲壳类动物一样,大理石小龙虾在经过充分研究的回路中具有大的神经元,例如巨大的尾部翻转神经元和在胃胃神经节中产生神经元的中央模式。我们提供的初步数据表明,大理石纹小龙虾神经元可以通过标准的生理和分子技术获得,包括单细胞电生理学,基因表达测量,和RNA干扰。我们讨论了使用“受体介导的卵巢货物转导”(ReMOT)方法对种系进行CRISPR介导的操作以敲除靶基因的进展。最后,我们认为这些方法将对十足甲壳类动物以及更广泛的无脊椎动物的神经生理学研究产生影响。
公众号