CRISPR

CRISPR
  • 文章类型: Journal Article
    Small mutations in the core promoter region of a gene may result in substantial changes in expression strengths. However, targeting TA-rich sequences of core promoters may pose a challenge for Cas9 variants such as SpCas9 and other G-rich PAM-compatible Cas9s. In this study, we engineered a unique FrCas9 system derived from Faecalibaculum rodentium for plant genome editing. Our findings indicate that this system is efficient in rice when the TATA sequence is used as a PAM. In addition, FrCas9 demonstrated activity against all 16 possible NNTA PAMs, achieving an efficiency of up to 35.3% in calli and generating homozygous or biallelic mutations in 31.3% of the T0 transgenic plants. A proof-of-concept experiment to examine editing of the rice WX core promoter confirmed that FrCas9-induced mutations could modify gene expression and amylose content. Multiplex mutations and deletions were produced by bidirectional editing, mediated by FrCas9, using a single palindromic TATA sequence as a PAM. Moreover, we developed FrCas9-derived base editors capable of programmable conversion between A·T and G·C pairs in plants. This study highlights a versatile FrCas9 toolset for plant core promoter editing, offering great potential for the fine-tuning of gene expression and creating of new germplasms.
    UNASSIGNED: The online version contains supplementary material available at 10.1007/s42994-024-00157-5.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Efficient and precise genomic deletion shows promise for investigating the function of proteins in plant research and enhancing agricultural traits. In this study, we tested the PRIME-Del (PDel) strategy using a pair of prime editing guide RNAs (pegRNAs) that targeted opposite DNA strands and achieved an average deletion efficiency of 55.8% for 60 bp fragment deletions at six endogenous targets. Moreover, as high as 84.2% precise deletion efficiency was obtained for a 2000 bp deletion at the OsGS1 site in transgenic rice plants. To add the bases that were unintentionally deleted between the two nicking sequences, we used the PDel/Syn strategy, which introduced multiple synonymous base mutations in the region that had to be patched in the RT template. The PDel/Syn strategy achieved an average of 58.1% deletion efficiency at six endogenous targets, which was higher than the PDel strategy. The strategies presented in this study contribute to achieving more accurate and flexible deletions in transgenic rice plants.
    UNASSIGNED: The online version contains supplementary material available at 10.1007/s42994-024-00153-9.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The CRISPR/Cas9 technology revolutionizes targeted gene knockout in diverse organisms including plants. However, screening edited alleles, particularly those with multiplex editing, from herbicide- or antibiotic-resistant transgenic plants and segregating out the Cas9 transgene represent two laborious processes. Current solutions to facilitate these processes rely on different selection markers. Here, by taking advantage of the opposite functions of a d-amino acid oxidase (DAO) in detoxifying d-serine and in metabolizing non-toxic d-valine to a cytotoxic product, we develop a DAO-based selection system that simultaneously enables the enrichment of multigene edited alleles and elimination of Cas9-containing progeny in Arabidopsis thaliana. Among five DAOs tested in Escherichia coli, the one encoded by Trigonopsis variabilis (TvDAO) could confer slightly stronger d-serine resistance than other homologs. Transgenic expression of TvDAO in Arabidopsis allowed a clear distinction between transgenic and non-transgenic plants in both d-serine-conditioned positive selection and d-valine-conditioned negative selection. As a proof of concept, we combined CRISPR-induced single-strand annealing repair of a dead TvDAO with d-serine-based positive selection to help identify transgenic plants with multiplex editing, where d-serine-resistant plants exhibited considerably higher co-editing frequencies at three endogenous target genes than those selected by hygromycin. Subsequently, d-valine-based negative selection successfully removed Cas9 and TvDAO transgenes from the survival offspring carrying inherited mutations. Collectively, this work provides a novel strategy to ease CRISPR mutant identification and Cas9 transgene elimination using a single selection marker, which promises more efficient and simplified multiplex CRISPR editing in plants.
    UNASSIGNED: The online version contains supplementary material available at 10.1007/s42994-023-00132-6.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CRISPR/Cas9, presently the most widely used genome editing technology, has provided great potential for functional studies and plant breeding. However, the strict requirement for a protospacer adjacent motif (PAM) has hindered the application of the CRISPR/Cas9 system because the number of targetable genomic sites is limited. Recently, the engineered variants Cas9-NG, SpG, and SpRY, which recognize non-canonical PAMs, have been successfully tested in plants (mainly in rice, a monocot). In this study, we evaluated the targeted mutagenesis capabilities of these Cas9 variants in two important Brassica vegetables, Chinese cabbage (Brassica rapa spp. pekinensis) and cabbage (Brassica oleracea var. capitata). Both Cas9-NG and SpG induced efficient mutagenesis at NGN PAMs, while SpG outperformed Cas9-NG at NGC and NGT PAMs. SpRY achieved efficient editing at almost all PAMs (NRN > NYN), albeit with some self-targeting activity at transfer (T)-DNA sequences. And SpRY-induced mutants were detected in cabbage plants in a PAM-less fashion. Moreover, an adenine base editor was developed using SpRY and TadA8e deaminase that induced A-to-G conversions within target sites using non-canonical PAMs. Together, the toolboxes developed here induced successful genome editing in Chinese cabbage and cabbage. Our work further expands the targeting scope of genome editing and paves the way for future basic research and genetic improvement in Brassica.
    UNASSIGNED: The online version contains supplementary material available at 10.1007/s42994-024-00155-7.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Introduction: CRISPR gene editing, while highly efficient in creating desired mutations, also has the potential to cause off-target mutations. This risk is especially high in clonally propagated plants, where editing reagents may remain in the genome for long periods of time or in perpetuity. We studied a diverse population of Populus and Eucalyptus trees that had CRISPR/Cas9-containing transgenes that targeted one or two types of floral development genes, homologs of LEAFY and AGAMOUS. Methods: Using a targeted sequence approach, we studied approximately 20,000 genomic sites with degenerate sequence homology of up to five base pairs relative to guide RNA (gRNA) target sites. We analyzed those sites in 96 individual tree samples that represented 37 independent insertion events containing one or multiples of six unique gRNAs. Results: We found low rates of off-target mutations, with rates of 1.2 × 10-9 in poplar and 3.1 × 10-10 in eucalypts, respectively, comparable to that expected due to sexual reproduction. The rates of mutation were highly idiosyncratic among sites and not predicted by sequence similarity to the target sites; a subset of two gRNAs showed off-target editing of four unique genomic sites with up to five mismatches relative to the true target sites, reaching fixation in some gene insertion events and clonal ramets. The location of off-target mutations relative to the PAM site were essentially identical to that seen with on-target CRISPR mutations. Discussion: The low rates observed support many other studies in plants that suggest that the rates of off-target mutagenesis from CRISPR/Cas9 transgenes are negligible; our study extends this conclusion to trees and other long-lived plants where CRISPR/Cas9 transgenes were present in the genome for approximately four years.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Genome editing is a powerful tool for establishing gene knockout or mutant cell lines. Here, we present a protocol for establishing knockout cell clones by deletion of large gene fragments using CRISPR-Cas9 with multiple guide RNAs. We describe steps for designing guide RNAs, cloning them into CRISPR-Cas9 vectors, cell seeding, transfection into cultured cells, clonal selection, and screening assays. This protocol can delete gene regions over 100 kbp, including GC-rich domains, and is applicable to various cell lines. For complete details on the use and execution of this protocol, please refer to Saito et al.,1 Saito and Endo et al.,2 and Higashi et al.3.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    CRISPR-Cas极大地促进了外源序列整合到特定基因座中。然而,在多细胞动物中敲入代仍然具有挑战性,部分是由于插入筛选的复杂性。这里,我们描述了种子/收获,一种在果蝇中产生敲击蛋白的方法,基于CRISPR-Cas和单链退火(SSA)修复途径。在SEED中(来自“通过元素删除进行无疤痕编辑”),首先将可切换盒整合到目标基因座中。在随后的CRISPR触发的修复事件中,由SSA解决,磁带被无缝地移除。SEED盒的种系切除允许串联的荧光蛋白和短蛋白标签的快速和稳健的敲入生成。Cas9的组织特异性表达导致体细胞盒切除,赋予蛋白质标记的时空控制和突变体的条件拯救。最后,为了实现条件蛋白标记和短标签敲击素的操作,我们通过功能化ALFA纳米抗体开发了一个基因工具箱。
    CRISPR-Cas greatly facilitated the integration of exogenous sequences into specific loci. However, knockin generation in multicellular animals remains challenging, partially due to the complexity of insertion screening. Here, we describe SEED/Harvest, a method to generate knockins in Drosophila, based on CRISPR-Cas and the single-strand annealing (SSA) repair pathway. In SEED (from \"scarless editing by element deletion\"), a switchable cassette is first integrated into the target locus. In a subsequent CRISPR-triggered repair event, resolved by SSA, the cassette is seamlessly removed. Germline excision of SEED cassettes allows for fast and robust knockin generation of both fluorescent proteins and short protein tags in tandem. Tissue-specific expression of Cas9 results in somatic cassette excision, conferring spatiotemporal control of protein labeling and the conditional rescue of mutants. Finally, to achieve conditional protein labeling and manipulation of short tag knockins, we developed a genetic toolbox by functionalizing the ALFA nanobody.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    乳酸菌(LAB)在牛奶发酵中具有安全使用的悠久历史,当存在于发酵食品中时,通常被认为是促进健康的微生物。LAB也是人类肠道微生物群的重要组成部分,被广泛用作益生菌。考虑到它们的安全和有益于健康的特性,LAB被认为是可以转基因食品的合适载体,工业和制药应用。这里,这篇综述描述了(1)转基因LAB菌株在乳制品发酵中应用的潜在机会和(2)LAB菌株的各种基因组修饰工具,比如随机诱变,适应性实验室进化,共轭,同源重组,重组工程,和CRISPR(成簇的规则间隔的短回文重复)-Cas(CRISPR相关蛋白)基于基因组工程。最后,这篇综述还讨论了这些基因组修饰技术的潜在未来发展及其在乳制品发酵中的应用。
    Lactic Acid Bacteria (LAB) have a long history of safe use in milk fermentation and are generally recognized as health-promoting microorganisms when present in fermented foods. LAB are also important components of the human intestinal microbiota and are widely used as probiotics. Considering their safe and health-beneficial properties, LAB are considered appropriate vehicles that can be genetically modified for food, industrial and pharmaceutical applications. Here, this review describes (1) the potential opportunities for application of genetically modified LAB strains in dairy fermentation and (2) the various genomic modification tools for LAB strains, such as random mutagenesis, adaptive laboratory evolution, conjugation, homologous recombination, recombineering, and CRISPR (clustered regularly interspaced short palindromic repeat)- Cas (CRISPR-associated protein) based genome engineering. Lastly, this review also discusses the potential future developments of these genomic modification technologies and their applications in dairy fermentations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    移动簇状规则间隔回文重复干扰(Mobile-CRISPRi)是一种已建立的细菌基因表达敲低方法。失活的Cas9蛋白和指导RNA是异丙基β-D-1-硫代吡喃半乳糖苷诱导型,所有成分都通过Tn7转座整合到染色体中。这里,我们优化了在多个弧菌物种中应用Mobile-CRISPRi的特定方法。
    Mobile clustered regularly interspaced palindromic repeats interference (Mobile-CRISPRi) is an established method for bacterial gene expression knockdown. The deactivated Cas9 protein and guide RNA are isopropyl β-D-1-thiogalactopyranoside inducible, and all components are integrated into the chromosome via Tn7 transposition. Here, we optimized methods specific for applying Mobile-CRISPRi in multiple Vibrio species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    新兴病毒,如丝状病毒(埃博拉病毒,Marburg),SARS和MERS冠状病毒,和Zika,对全球公共卫生构成重大威胁,特别是对于有合并症的人。为了应对这些挑战,这篇综述文章探讨了对抗新兴病毒的多学科策略。我们强调发展精确诊断的重要性,创新的治疗基因和疫苗递送系统,和长效纳米疗法。这些方法旨在增强针对这些致命病原体的治疗的安全性和有效性。我们讨论病毒学家的合作努力,遗传学家,配方科学家,临床医生,免疫学家,和药物化学家在推进这些治疗方式。
    Emerging viruses, such as filoviruses (Ebola, Marburg), SARS and MERS coronaviruses, and Zika, pose significant threats to global public health, particularly for individuals with co-morbidities. To address these challenges, this review article explores multidisciplinary strategies for combatting emerging viruses. We emphasize the importance of developing accurate diagnostics, innovative therapeutic gene and vaccine delivery systems, and long-acting nanotherapeutics. These approaches are designed to enhance the safety and efficacy of treatments against these deadly pathogens. We discuss the collaborative efforts of virologists, geneticists, formulation scientists, clinicians, immunologists, and medicinal chemists in advancing these therapeutic modalities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号