关键词: Advanced glycation end products Antiglycation Flavonoids Natural inhibitors Plant extracts Synthetic inhibitors

Mesh : Animals Biological Products / chemistry pharmacology therapeutic use Diabetes Complications Diabetes Mellitus / metabolism Disease Management Disease Susceptibility Glycation End Products, Advanced / chemistry metabolism Glycosylation / drug effects Humans Plant Extracts / chemistry pharmacology therapeutic use Protein Aggregates / drug effects Protein Aggregation, Pathological / drug therapy Protein Binding / drug effects Protein Processing, Post-Translational / drug effects Protein Stability / drug effects Proteins / chemistry metabolism Structure-Activity Relationship

来  源:   DOI:10.1016/j.ijbiomac.2021.12.041

Abstract:
Non-enzymatic reaction involving carbonyl of reducing sugars and amino groups in proteins produces advanced glycation end products (AGEs). AGE accumulation in vivo is a crucial factor in the progression of metabolic and pathophysiological mechanisms like obesity, diabetes, coronary artery disease, neurological disorders, and chronic renal failure. The body\'s own defense mechanism, synthetic inhibitors, and natural inhibitors can all help to prevent the glycation of proteins. Synthetic inhibitors have the potential to suppress the glycation of proteins through a variety of pathways. They could avoid Amadori product development by tampering with the addition of sugars to the proteins. Besides which, the free radical scavenging and blocking crosslink formation could be another mechanism behind their anti-glycation properties. In comparison with synthetic substances, naturally occurring plant products have been found to be comparatively non-toxic, cheap, and usable in an ingestible form. This review gives a brief introduction of the Maillard reaction; formation, characterization and pathology related to AGEs, potential therapeutic approaches against glycation, natural and synthetic inhibitors of glycation and their probable mechanism of action. The scientific community could get benefit from the combined knowledge about important molecules, which will further guide to the design and development of new pharmaceutical compounds.
摘要:
涉及蛋白质中还原糖的羰基和氨基的非酶反应产生晚期糖基化终产物(AGEs)。体内AGE积累是肥胖等代谢和病理生理机制进展的关键因素,糖尿病,冠状动脉疾病,神经系统疾病,慢性肾功能衰竭.身体自身的防御机制,合成抑制剂,和天然抑制剂都可以帮助防止蛋白质的糖基化。合成抑制剂具有通过多种途径抑制蛋白质糖基化的潜力。他们可以通过篡改向蛋白质中添加糖来避免Amadori产品开发。除此之外,自由基清除和阻止交联形成可能是其抗糖基化特性背后的另一种机制。与合成物质相比,已发现天然植物产品相对无毒,便宜,并以可摄取的形式使用。这篇综述简要介绍了美拉德反应;形成,与AGEs相关的表征和病理,针对糖基化的潜在治疗方法,天然和合成的糖基化抑制剂及其可能的作用机制。科学界可以从关于重要分子的综合知识中受益,这将进一步指导新药物化合物的设计和开发。
公众号