关键词: aging beaver chromosome-level assembly evolutionary analyses gene expression genome long-lived rodents longevity naked mole rat stress resistance

Mesh : Aging / genetics Animals Genome / genetics Longevity / genetics Models, Animal Mole Rats / genetics Rodentia / genetics Species Specificity Transcriptome / genetics

来  源:   DOI:10.1016/j.celrep.2020.107949   PDF(Sci-hub)

Abstract:
Long-lived rodents have become an attractive model for the studies on aging. To understand evolutionary paths to long life, we prepare chromosome-level genome assemblies of the two longest-lived rodents, Canadian beaver (Castor canadensis) and naked mole rat (NMR, Heterocephalus glaber), which were scaffolded with in vitro proximity ligation and chromosome conformation capture data and complemented with long-read sequencing. Our comparative genomic analyses reveal that amino acid substitutions at \"disease-causing\" sites are widespread in the rodent genomes and that identical substitutions in long-lived rodents are associated with common adaptive phenotypes, e.g., enhanced resistance to DNA damage and cellular stress. By employing a newly developed substitution model and likelihood ratio test, we find that energy and fatty acid metabolism pathways are enriched for signals of positive selection in both long-lived rodents. Thus, the high-quality genome resource of long-lived rodents can assist in the discovery of genetic factors that control longevity and adaptive evolution.
摘要:
暂无翻译
公众号