%0 Journal Article %T Beaver and Naked Mole Rat Genomes Reveal Common Paths to Longevity. %A Zhou X %A Dou Q %A Fan G %A Zhang Q %A Sanderford M %A Kaya A %A Johnson J %A Karlsson EK %A Tian X %A Mikhalchenko A %A Kumar S %A Seluanov A %A Zhang ZD %A Gorbunova V %A Liu X %A Gladyshev VN %J Cell Rep %V 32 %N 4 %D 07 2020 28 %M 32726638 暂无%R 10.1016/j.celrep.2020.107949 %X Long-lived rodents have become an attractive model for the studies on aging. To understand evolutionary paths to long life, we prepare chromosome-level genome assemblies of the two longest-lived rodents, Canadian beaver (Castor canadensis) and naked mole rat (NMR, Heterocephalus glaber), which were scaffolded with in vitro proximity ligation and chromosome conformation capture data and complemented with long-read sequencing. Our comparative genomic analyses reveal that amino acid substitutions at "disease-causing" sites are widespread in the rodent genomes and that identical substitutions in long-lived rodents are associated with common adaptive phenotypes, e.g., enhanced resistance to DNA damage and cellular stress. By employing a newly developed substitution model and likelihood ratio test, we find that energy and fatty acid metabolism pathways are enriched for signals of positive selection in both long-lived rodents. Thus, the high-quality genome resource of long-lived rodents can assist in the discovery of genetic factors that control longevity and adaptive evolution.