关键词: Conformational characteristics Corn gluten meal (CGM) Dual-frequency slit ultrasound (DFSU) Enzymolysis

Mesh : Disulfides / chemistry Food Handling Glutens / chemistry metabolism Hydrolysis Kinetics Models, Molecular Protein Conformation Proteolysis Sonication Subtilisins / metabolism Temperature Zea mays / chemistry

来  源:   DOI:10.1016/j.ultsonch.2020.105038   PDF(Sci-hub)

Abstract:
The influences of dual-frequency slit ultrasound (DFSU) pretreatment with various working parameters on the enzymolysis efficiency and conformational characteristics of corn gluten meal (CGM) were studied. Results indicated that under the conditions of ultrasonic power density of 80 W/L, time of 30 min, ultrasonic intermittent ratio of 5:2 s/s, temperature of 30 °C, and substrate concentration of 50 g/L, the relative enzymolysis efficiency (REE) of CGM reached a maximum of 21.05%, and the protein dissolution rate was 68.50%. In addition, ultrasonication had considerable impact on the conformation of CGM and consequently improved the susceptibility to alcalase proteolysis. Changes in free sulfhydryl (SHF) and disulfide bonds (SS) groups indicated spatial conformation of CGM was altered following sonication (sonochemical) treatment. Fourier Transform Infrared Spectrum (FITR) analysis showed a reduction in α-helix and β-turn content; and an increase in β-sheet and random coil content of CGM. Alterations in the particle size, particle size distribution, microstructure and surface roughness (Ra, Rq) indicated generation of smaller and more uniform protein fragments of CGM by sonochemical pretreatment. The proposed mechanism of sonicated CGM was elaborated. Our findings suggest that using DFSU in pretreating CGM may be an efficacious approach to enhance proteolysis.
摘要:
暂无翻译
公众号